

Learning AWS
Second Edition

Design, build, and deploy responsive applications using AWS
Cloud components

Aurobindo Sarkar
Amit Shah

BIRMINGHAM - MUMBAI

Learning AWS
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editors: Prateek Bharadwaj, Shrilekha Inani
Content Development Editor: Sharon Raj
Technical Editor: Mohit Hassija
Copy Editors: Safis Editing, Dipti Mankame, Laxmi Subramanian
Project Coordinator: Virginia Dias
Proofreader: Safis Editing
Indexer: Francy Puthiry
Production Coordinator: Deepika Naik

First published: July 2015
Second edition: January 2018

Production reference: 1310118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-106-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Aurobindo Sarkar is currently the country head (India Engineering Center) for ZineOne
Inc. With a career spanning over 25 years, he has consulted at some of the leading
organizations in India, the US, the UK, and Canada. He specializes in real-time
architectures, machine learning, cloud engineering, and big data analytics. Aurobindo has
been actively working as a CTO in technology startups for over 8 years now. He also
teaches machine learning courses at business schools and corporates.

I would like to thank the editors and publishing staff at Packt for the opportunity to write
the second edition of this book. I would especially like to thank Sharon Raj, Content
Development Editor, who worked with me patiently.
Most of all, I am thankful to my wife, Nitya, and kids, Somnath, Ravishankar, and
Nandini.

Amit Shah has a bachelor's degree in electronics. He is a director at Global Eagle. He has
been programming since the early '80s, the first wave of personal computing―initially as a
hobbyist and then as a professional. His areas of interest include embedded systems, IoT,
analog, and digital hardware design, systems programming, cloud computing, and
enterprise architecture. He has been working extensively in the fields of cloud computing
and enterprise architecture for the past 7 years.

About the reviewer
Rishabh Sharma has around 7+ years of cloud operations and architectural experience in
the Fortune 500, MNCs, and start-ups. Currently, he is working as a deputy system
manager in a reputed IT company in Hong Kong. He has authored many research papers in
international journals and IEEE on a variety of issues related to cloud computing and has
authored six technical books to date including hands on guides. He recently published four
books internationally: Cloud Computing: Fundamentals, Industry Approach and Trends, Learning
OpenStack High Availability, and Learning Chef.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Cloud 101 – Understanding the Basics 6

Defining cloud computing 7
Introducing public, private, and hybrid clouds 8
Introducing cloud service models – IaaS, PaaS, and SaaS 9
Introducing multi-tenancy models 10
Understanding cloud-based workloads 13

Migrating on-premise applications to the cloud 13
Building cloud-native applications 15

Setting up your AWS account 15
Creating a new AWS account 16
Exploring the AWS management console 21

Summary 26

Chapter 2: Designing Cloud Applications 27

Introducing cloud-based multitier architecture 28
Designing for multi-tenancy 30

Addressing data-at-rest security requirements 32
Addressing data extensibility requirements 34

Understanding cloud applications design principles 39
Designing for scale 39
Automating cloud infrastructure 42
Designing for failure 43
Designing for parallel processing 44
Designing for performance 45
Designing for eventual consistency 46

Understanding emerging cloud-based application architectures 47
Understanding polyglot persistence 49
Understanding Lambda architecture 50
Understanding Kappa architecture 51
Deploying cloud-based machine learning pipelines 51
Deploying cloud-based machine learning models 53

Estimating your cloud computing costs 53
A typical e-commerce web application 56

Table of Contents

[ii]

Setting up your development environment 58
Running the application 61
Building a war file for deployment 63
Application structure 64

Summary 66

Chapter 3: Introducing AWS Components 67

AWS components 68
Amazon compute-related services 68

Amazon EC2 68
Amazon EC2 container service 69
AWS Lambda 69

Amazon storage-related services 69
Amazon S3 69
Amazon EBS 70
Amazon Glacier 70

Amazon database-related services 70
Amazon Relational Database Service (RDS) 70
Amazon DynamoDB 71
Amazon Redshift 71
Amazon ElastiCache 72

Amazon messaging-related services 72
Amazon SQS 72
Amazon SNS 72
Amazon SES 72
Amazon Pinpoint 73

Amazon networking and content delivery services 73
Amazon VPC (Virtual Private Cloud) 73
Amazon Elastic Load Balancing 73
Amazon Route 53 74
Amazon CloudFront 74
AWS Direct Connect 74

Amazon management tools 74
AWS CloudFormation 74
Amazon CloudWatch 74
AWS CloudTrail 75

Amazon security, identity, and compliance services 75
AWS Identity and Access Management (IAM) 75
AWS Directory Service 76
Amazon Certificate Manager 76
AWS Key Management Service 76
AWS WAF 76

Amazon analytics-related services 76
Amazon EMR 77
Amazon Kinesis 77

Table of Contents

[iii]

Amazon machine learning/AI-related services 77
Amazon Machine Learning 77
Other Amazon AI-related services 78

Other Amazon services 78
Managing costs on AWS cloud 79

Setting costs-related objectives 79
Optimizing costs on the cloud 79
Strategies to lower AWS costs 81

Monitoring and analyzing costs 81
Choosing the right EC2 Instance 82
Turn-off unused instances 84
Using Auto Scaling 84
Using reserved instances 86
Using spot instances 87
Using Amazon S3 storage 88
Optimizing database utilization and costs 89
Using AWS services 90
Using queues 91

Application development environments 91
Development environment 91
QA/test environment 92
Staging environment 92
Production environment 92

Setting up the AWS infrastructure 92
AWS Cloud deployment architecture 93
AWS cloud construction 95

Creating security groups 95
Creating EC2 instance key pairs 97
Creating roles 98
Creating an EC2 instance 101
Creating and associating Elastic IPs (EIP) 109
Configuring the Amazon Relational Database Service (RDS) 112
Installing and verifying the software stack 126

Summary 129

Chapter 4: Designing for and Implementing Scalability 130

Defining scalability objectives 130
Designing scalable application architectures 131

Using AWS services for out-of-the-box scalability 132
Using a scale-out approach 132
Implementing loosely-coupled components 132
Implementing asynchronous processing 133

Leveraging AWS infrastructure services for scalability 133

Table of Contents

[iv]

Using AWS CloudFront to distribute content 134
Using AWS ELB to scale without service interruptions 134
Using Amazon CloudWatch for Auto Scaling 134
Scaling data services 135
Scaling proactively 136
Using the EC2 container service 136

Evolving architecture against increasing loads 137
Scaling from one to half a million users 137
Scaling from half a million to a million users 139
Scaling from a million to ten million users 141

Event handling at scale 141
Implementing a large-scale API-based architecture with AWS services 142

Using Amazon API Gateway 142
Using AWS Lambda 142
Using Kinesis Streams 143
Using Elasticsearch 143

Analyzing streaming data in real time with Amazon Kinesis Analytics 144
Using Amazon Kinesis Firehose 145
Using Amazon Kinesis Analytics 145
Building real-time applications with Amazon Kinesis Analytics 145

Setting up Auto Scaling 146
AWS Auto Scaling construction 146

Creating an AMI 146
Creating the Elastic Load Balancer 149
Creating launch configuration 158
Creating an Auto Scaling group 164

Testing Auto Scaling groups 175
Summary 176

Chapter 5: Designing for and Implementing High Availability 177

Defining availability objectives 178
Nature of failures 179

Setting up VPC for high availability 179
Using ELB and Route 53 for high availability 180

Instance availability 180
Auto Scaling for increased availability and reliability 181
Zonal Availability or Availability Zone Redundancy 182
Region availability or regional redundancy 182

Setting up high availability for application and data layers 183
Implementing high availability in the application 185

Using AWS for disaster recovery 186
Using a backup and restore DR strategy 187
Using a Pilot Light architecture for DR 187

Table of Contents

[v]

Using a warm standby architecture for DR 187
Using a Multi-Site architecture for DR 188

Testing disaster recovery strategy 188
Setting up high availability 189

AWS high availability architecture 189
HA support for Elastic Load Balancer 194
HA support for the Relational Database Service 197

Summary 202

Chapter 6: Designing for and Implementing Security 203

Defining security objectives 204
Understanding the security responsibilities 205
Best practices in implementing AWS security 206

Security considerations while using CloudFront 208
CloudFront and ACM integration 209
Understanding access control options 210
Web Application Firewall 210
Securing the application 211

Implementing Identity Lifecycle Management 211
Tracking AWS API activity using CloudTrail 212
Logging for security analysis 212
Using third-party security solutions 212
Reviewing and auditing security configuration 213

Setting up security 214
Using AWS IAM to secure an infrastructure 214

Understanding IAM roles 215
Using the AWS Key Management Service 217

Creating KMS keys 218
Using the KMS key 222

Application security 223
Implementing transport security 224
Generating self-signed certificates 224
Configuring ELB for SSL 225

Securing data at rest 230
Securing data on S3 230
Using the S3 console for server-side encryption 230
Securing data on RDS 235

Summary 235

Chapter 7: Deploying to Production and Going Live 236

Managing infrastructure, deployments, and support at scale 237
Creating and managing AWS environments using CloudFormation 238

Creating CloudFormation templates 240

Table of Contents

[vi]

Building a DevOps pipeline with CloudFormation 241
Updating stacks 242
Extending CloudFormation 246

Using CloudWatch for monitoring 246
Using AWS solutions for backup and archiving 247
Planning for production go-live activities 249
Setting up for production 250

AWS production deployment architecture 250
VPC subnets 252
Private subnet 252
Bastion subnet 258
Bastion host 258
Security groups 259

Infrastructure as Code 261
Setting up CloudFormation 261

Centralized logging 268
Setting up CloudWatch 269

Summary 270

Chapter 8: Designing a Big Data Application 271

Introducing big data applications 272
AWS components used in big data applications 274

Analyzing streaming data with Amazon Kinesis 274
Best practices for serverless big data applications 275
Best practices for using Amazon EMR 276

Understanding common EMR use cases 277
Lowering EMR costs 278

Using Amazon EC2 Spot and Auto Scaling 279
Best practices for distributed machine learning and predictive
analytics 280

Using Amazon SageMaker for machine learning 282
Understanding Amazon SageMaker algorithms and features 283

Security overview for big data applications 284
Securing the EMR cluster 284

Encryption 284
Authentication 285
Authorization 285

Securing serverless applications 286
Understanding serverless application authentication and authorization 287

Configuring and using EMR-Spark clusters 290
Summary 308

Table of Contents

[vii]

Chapter 9: Implementing a Big Data Application 309

Setting up an Amazon Kinesis Stream 310
Creating an AWS Lambda function 314
Using Amazon Kinesis Firehose 320
Using AWS Glue and Amazon Athena 325
Using Amazon SageMaker 341
Summary 348

Chapter 10: Deploying a Big Data System 349

Using CloudFormation templates 350
Creating a data lake using a CloudFormation template 350

Authoring and deploying serverless applications 360
Understanding AWS SAM 372

Understanding the SAM template 372
Introducing SAM Local 373
Developing serverless applications using AWS Cloud9 374

Automating serverless application deployments 374
Using AWS Serverless Application Repository 376
Summary 377

Appendix A: Other Books You May Enjoy 378

Leave a review - let other readers know what you think 380

Index 381

Preface
The main focus of this book is to cover cloud concepts followed by design, development,
and deployment of scalable, available, and secure applications on AWS. We will introduce
you to the fundamental AWS building blocks such as compute instances, storage, security,
and networking. We will start by helping you to set up your AWS account and then explain
the wide variety of AWS service offerings, cloud environments, and costing models.

This book will not only guide you through various design decision trade-offs and ideas but
will also illustrate the implementation of popular use cases, frameworks, and application
architectures to get the most out of AWS services. You will also understand the guiding
principles and best practices for using AWS services to implement cost-efficient application
architectures.

We will explain high-availability, scalability and auto-scaling, security, serverless
computing, and Infrastructure as Code concepts on AWS. We will also cover disaster
recovery, production deployments and application monitoring techniques in real-world
AWS applications. Finally, we will cover the design, implementation, and deployment of
emerging applications such as big data analytics, real-time streaming and machine learning
applications on AWS.

By the end of this book, you will be well versed with various services that AWS provides
and you will learn to design and build scalable, highly available, and secure AWS
applications. More specifically, we will cover key architectural components and patterns in
large-scale AWS applications that architects and designers will find useful as building
blocks for their own specific use cases.

Who this book is for
If you are a developer, engineer, or an architect new to AWS environment, then this book is
for you. You will also find this book useful, if you have some prior experience designing
and building on-premise applications and are now considering migrating or refactoring
your applications to run on AWS cloud. Additionally, if you are keen to explore newer
AWS services to build big data, real-time streaming, and machine learning applications on
AWS, then you will find the last three chapters specifically covering these topics in detail.
Some previous to Java and/or Python programming is all you need to get started with this
book.

Preface

[2]

What this book covers
Chapter 1, Cloud 101 – Understanding the Basics, describes basic cloud concepts, including
the public, private, and hybrid cloud models. It explains and compares the Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) cloud
service delivery models. Finally, the next generation of applications being deployed on the
cloud, including streaming applications, machine learning pipelines, and deep learning
applications are discussed.

Chapter 2, Designing Cloud Applications, describes familiar and not-so-familiar architectural
best practices in the cloud context, including multi-tier architecture, multi-tenancy,
scalability, and availability. This chapter introduces design considerations for cloud-based
big data applications, batch and streaming architectures, and ML pipelines. It also provides
guidelines for estimating cloud-computing costs.

Chapter 3, Introducing AWS Components, introduces AWS components such as EC2, S3,
RDS, DynamoDB, SQS Queues, and SNS. It discusses strategies to lower AWS
infrastructure costs and their implications on architectural decisions. It explains the typical
characteristics of the development, QA, staging, and production environments on the AWS
Cloud.

Chapter 4, Designing for and Implementing Scalability, provides guidance on how to define
your scalability objectives, and then discusses the design and implementation of specific
strategies to achieve scalability.

Chapter 5, Designing for and Implementing High Availability, provides guidance on how to
define availability objectives, discusses the nature of failures, and explains design and
implementation of specific strategies to achieve high availability. In addition, this chapter
describes the approaches that leverage the AWS features and services for disaster-recovery
planning.

Chapter 6, Designing for and Implementing Security, provides guidance on how to define
security objectives, explains security responsibilities, and then discusses the
implementations of specific best practices for application security.

Chapter 7, Deploying to Production and Going Live, provides guidance on managing
infrastructure, deployments, support, and operations for your cloud application. In
addition, it offers some tips on planning production go-live activities.

Chapter 8, Designing a Big Data Application, introduces the design principles and best
practices for using services such as Kinesis, EMR, and Lambda to design AWS-based big
data applications.

Preface

[3]

Chapter 9, Implementing a Big Data Application, implements several popular AWS-based big
data use cases using AWS services such as Kinesis, EMR, Lambda, Glue, and Spark.

Chapter 10, Deploying a Big Data Application, introduces CloudFormation templates to
deploy several popular big data stacks on AWS, including streaming and machine learning
applications.

To get the most out of this book
This book primarily requires an AWS account for the hands-on sessions contained in each
chapter. For the sample applications, we require Eclipse Java IDE (latest version) and
Python 2.7 or 3.6. Maven builds takes care of all other dependencies.

Hardware and OS specifications includes laptop or desktop with an internet connection,
and Windows, Linux, or macOS X (preferably the latest versions).

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/LearningAWSSecondEdition_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAWSSecondEdition_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

public class KMSClient{
 private String keyId = "arn:aws:kms:us-
west-2:450394462648:key/1cd0e2d5-61e1-4a71-a6b2-b9db825c9fce";
 private AWSCredentials credentials;
 private AWSKMSClient kms;

 public KMSClient(){
 credentials = new BasicAWSCredentials(accessKey, secretKey);
 kms = new AWSKMSClient(credentials);
 kms.setEndpoint("kms.us-west-2.amazonaws.com");
 }

Any command-line input or output is written as follows:

mkdir a1electronics

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"From the EC2 navigation pane, click on Instances to view all your EC2 instances."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Cloud 101 – Understanding the

Basics
In this chapter, we will introduce you to cloud computing and the key terminologies used
commonly by cloud practitioners. We will briefly describe what public, private and hybrid
clouds are, followed by a description of various cloud service models (offered by the service
providers) including the features of Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS).

One of the main cloud-based product design elements is multi-tenancy; often considered
critical from a profitability and ROI perspective. So, we will spend some time discussing, at
a high level, models of multi-tenancy and their implications on design and operations.

We will also discuss some of the traditional workloads being shifted to the cloud and others
being developed from the ground up, to leverage cloud services, extensively. These include
shifting in-premise systems to the cloud, replacing in-premise product offerings such as
ERP and CRM applications with cloud-based versions, and using a mix of in-premise and
cloud-based systems. Additionally, we will look at how a large number of modern big data
applications, such as recommendation engines, large-scale analytics applications, machine
learning pipelines, deep learning workloads, are being targeted for cloud environment
deployment only.

To help you get started on AWS, we will end the chapter by walking you through a step-by-
step process of creating an AWS account and describing some of the salient features of the
AWS dashboard.

Cloud 101 – Understanding the Basics Chapter 1

[7]

This chapter will cover the following points:

Define cloud computing and describe some of its characteristics
Describe and compare public, private, and hybrid clouds
Explain and compare IaaS, PaaS, and SaaS cloud service delivery models
Explain multi-tenancy models and some challenges they present in design,
implementation and operations
Briefly describe typical cloud-based workloads
Outline the steps to create an AWS account
A brief overview of the AWS management console

Defining cloud computing
Wikipedia defines cloud computing as:

"…internet-based computing in which large groups of remote servers are networked to
allow the centralized data storage, and online access to computer services or resources."

The National Institute of Standards and Technology (NIST) gives the following definition of
cloud computing:

"…a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction."

There are several other broadly accepted definitions of cloud computing. Some explicitly
emphasize configurability of the resources, while others include the need for rapid on-
demand provisioning of resources, still others drop the requirement of access via the
internet. We define cloud computing as a model that enables the features listed as follows:

Users should be able to provision and release resources on-demand
The resources can be scaled up or scaled down, automatically, depending on the
load
The provisioned resources should be accessible over a network
Cloud service providers should enable a pay-as-you-go model where customers
are charged, based on the type and quantum of resources they consume

Cloud 101 – Understanding the Basics Chapter 1

[8]

Some of the implications of choosing to use the cloud for your computing needs are:

The illusion of infinite processing and storage resources available on demand
reduce the need for detailed advance planning and procurement processes.
The model promotes the use of resources as per customer needs, for example,
starting small, and then increasing resources based on an increase in need.
Provisioning development and test environments on a smaller scale, and
enabling them only during working hours to reduce the cost of development.
The staging environment can be provisioned for a short duration to be a replica of
the production environment. This enables testing using production configuration
(and scale) and for improved production defect resolution.
The ability to auto scale in order to better manage spikes in demand and
variations due to business cycles or time-of-day reasons, and so on.
It encourages experimentation by trying out new ideas and software by quickly
provisioning resources rather than requisition for resources through time
consuming and cumbersome processes.

These and other implications of using cloud services to design scalable, highly available and
secure applications are discussed in depth in the subsequent chapters.

Introducing public, private, and hybrid
clouds
Basically, there are three types of clouds in cloud computing, they are public, private and
hybrid clouds.

In a public cloud, third-party service providers make resources and services available to
their customers via the internet. The customers' applications and data are deployed on
infrastructure that is owned and secured by the service provider.

A private cloud provides many of the same benefits of a public cloud but the services and
data are managed by the organization, or a third-party, solely, for the customer's
organization. Usually, a private cloud places increased administrative overheads on the
customer but gives greater control over the infrastructure and reduces security-related
concerns. The infrastructure may be located on or off the organization’s premises.

Cloud 101 – Understanding the Basics Chapter 1

[9]

A hybrid cloud is a combination of both a private and a public cloud. The decision on what
runs on the private versus the public cloud is usually based on business criticality of the
application and sensitivity of the data. But in some cases, spikes in demand for resources, or
spillovers, in the private cloud are also handled in the public cloud.

Introducing cloud service models – IaaS,
PaaS, and SaaS
There are three cloud-based service models. The main features of each of these are listed as
follows:

IaaS provides a capability for users to provision processing, storage, and network
resources on demand. The customers deploy and run their own applications on
these resources. Using this service model is closest to the traditional in-premise
models but without the lengthy procurement processes. The onus of
administering these resources rests, largely, with the customer.
In PaaS, the service provider makes certain core components such as databases,
queues, workflow engines, email, and so on, available as services to the customer.
The customer then leverages these components for building their own
applications. The service provider ensures high service levels, and is responsible
for scalability, high availability, and so on, for these components. This allows
customers to focus a lot more on their application functionality. However, this
model also leads to application-level dependency on the providers' services.
In the SaaS model, typically, third-party providers using a subscription model
provide end user applications to their customers. The customers may have some
administrative capability at the application level, for example, to create and
manage their users. Such applications also provide some degree of
customizability, for example, the customers can use their own corporate logos,
colors, and so on. Applications that have a very wide user base most often
operate in a self-service mode. In contrast, the provider provisions the
infrastructure and the application for the customer for more specialized
applications. The provider also hands over the management of the application to
the customer's application administrator (in most cases this is limited to user
management tasks).

From an infrastructure perspective, the customer does not manage or control the
underlying cloud infrastructure in all three service models.

Cloud 101 – Understanding the Basics Chapter 1

[10]

The following figure illustrates who is responsible for managing the various components of
a typical user application across IaaS, PaaS, and SaaS cloud service models. The shaded
boxes represent the service-providers' responsibilities, while the other boxes represent the
users' or end customers' responsibilities.

The level of control the user has over operating systems, storage, applications, and certain
network components (for example, load balancers) is the highest in the IaaS model while
the least (or none) in the SaaS model.

Introducing multi-tenancy models
Multi-tenancy and multi-tenant architecture come up, repeatedly, especially in the context
of cloud product design and architecture discussions. Given that most SaaS products are
offered as a subscription, it is vital to understand this concept clearly as it can often be the
difference between having a highly profitable and an easy-to-manage product, and a failed
product or venture.

Cloud 101 – Understanding the Basics Chapter 1

[11]

Multi-tenancy is a principle in software architecture where a single instance of the software
serves multiple tenants or customers. The realization of this concept in software design is
probably one of more complex tasks in implementing and operating a cloud-based product.

Let's start by examining three basic models of a multi-tenant application. The following
figure illustrates these models:

In the first model, (A) Shared Nothing architecture, each customer has a separate copy of
the application and the database for their exclusive use. In some cases, the hardware
infrastructure is also separated out for each customer. Large enterprises may insist on this
separation mainly due to security concerns but also due to service-level concerns associated
with resource sharing. This is essentially application hosting rather than application multi-
tenancy.

Cloud 101 – Understanding the Basics Chapter 1

[12]

The second model, (B) Shared Application architecture, shares the same application
instance but the data is separated for each customer. And in the third model, (C) Shared
Everything architecture, both the application and the database instances are shared
resources among all the customers.

In real life, it is fairly common for customers to request a dedicated application and
infrastructure stack. Most smaller companies and start-ups give in under pressure,
especially if it is a major customer. However, this can be a very expensive option to sustain
over a period of time. Before you know it, you are maintaining several different versions of
the application and technology stacks, multiple database schema, operational and support-
related overheads across a set of customers. This makes application maintenance,
QA/testing effort, upgrades/releases, and customer support impossibly complex or
expensive or both. You are no longer an SaaS application provider!

It is very common and reasonable to expect a majority of customers to request that their
data be kept separated from other customers. It is also common for smaller businesses and
price-sensitive customers to not care how and where you store their data, as long as they
are satisfied by the security measures you have implemented. In all cases, it is imperative to
use encryption for the securing of sensitive data-at-rest.

Hence, in reality you end up with a mix of models where the concern is more focused on
data security rather than shared infrastructure or application code (as long as you can
provide a certain level of application customizability per customer and meet their service-
level requirements).

In this scenario, apart from security considerations (discussed in a later chapter) some of the
challenges that arise are listed as follows:

Increased costs of development: Isolating each customer's data in a separate
database is easier and faster to build, while using a shared approach requires a
larger development effort and initial costs, but can result in being able to serve
more tenants per server at a lower overall operational cost.
Isolating each tenant's database can give you more flexibility in handling each
customer's individual requirements (but there could be severe complications
when you release product upgrades, especially if your database schema is not
designed to handle such changes).
Regulatory considerations can directly impact your design and leave you with no
choice in terms of using a shared approach.

Cloud 101 – Understanding the Basics Chapter 1

[13]

Backups and restores are simpler operations in the case of isolated databases. In
the shared database approach, the impact of servicing a particular tenant's
backup or restore request will impact other active customers. These kinds of
issues can lead to SLA-related issues and other management overheads related to
explaining and issuing appropriate communications to all other customers, and
so on.

Normally, businesses charge their customers differently based on whether a customer
requests a separate database instance, or a fully segregated infrastructure for their exclusive
use only. Suppose you have grouped your customers into three categories such as Platinum,
Gold, and Silver. Your Platinum class customers are your biggest and the best. They are
willing to pay a premium for additional features and/or better service levels. Let's say, you
decide to provision separate infrastructure and database instances, for such customers.
Simultaneously, you decide to share the infrastructure and use a single database instance
for all your regular, or Silver class, customers. Imagine the operational complexity of a
situation where one of your Platinum class customers (Shared Nothing) wants to
downgrade their subscription level to the Silver class (Shared Everything) the following
year!

Understanding cloud-based workloads
In this section, we will discuss various workloads being deployed on the cloud. These could
be in-premise systems moved to the cloud, on-premise product versions replaced by cloud-
based offerings, and new applications being developed for cloud-only environments.

Migrating on-premise applications to the cloud
There are several reasons for organizations wanting to migrate their applications to the
cloud. These reasons typically include driving cost efficiency, improving productivity,
supporting faster go-to-market strategies, achieving better operational efficiency, and
others. Additionally, there are also several different strategies employed to move a portfolio
of applications to the cloud.

One of the most commonly used approaches is the lift-and-shift, or rehosting, existing
applications in the cloud. This approach can lead to some cost savings, especially if the
infrastructure is right-sized and expensive commercial licenses of proprietary products
replaced with cloud-based services (from the cloud service provider or third-party service
providers) or using equivalent open-source products.

Cloud 101 – Understanding the Basics Chapter 1

[14]

This approach is very popular compared to other approaches as it can be quicker to
implement, and some benefits may be realized right away. However, design limitations and
application inefficiencies in the existing in-premise application also get migrated to the
cloud along with the application. Typically, steady-state applications that are service-
oriented, loosely coupled, and with minimal inter dependencies with other applications are
the best candidates for using this approach.

A rehosting strategy can lead to disappointments when a changeover to a cloud
environment does not yield the expected levels of cost savings or a simpler operating
environment. This may be because the full benefits of the cloud are fully realized only when
cloud-native designs are implemented for various parts of the architecture. However,
resizing infrastructure as per application requirements or replatforming the application to
use cloud services or open-source products will definitely lead to increased cost advantages
but also take longer to implement.

Most times, subscribing to a product's cloud-based offering or shifting to another equivalent
or better cloud product can prove to be an advantageous strategy. For example, shifting to
cloud-based offerings of SAP or shifting over to Salesforce for CRM functionality is
increasingly becoming a favored strategy in many organizations. Finally, for some systems,
it is best to re-factor and/or re-architect the application for deriving the maximum benefits
of a migration to the cloud. Whatever the reasons and the strategy for migrating systems to
the cloud, it needs to be a well-planned exercise that includes infrastructure, application,
and data migration, with significant verification and validation effort at each step in the
process.

Typically, migration projects start with an analysis of the existing portfolio of applications
to figure out the sequence and strategy for each system to be migrated. Additionally, the
speed of such projects picks up as a result of increased exposure to the cloud environment
based on the initial set of migrations. The overall strategy in many cases is a mass lift-and-
shift followed by iterative improvements introduced in the application architecture over a
period of time. Sometimes these migrations are timed to avoid expensive lease and license
renewals, and/or hardware refreshes. The portfolio analysis exercise often consolidates
and/or rationalizes the hardware and software stacks used in an organization, identifies
applications that can be retired at specific points along the journey, and other applications
that will never be migrated due to regulatory or other concerns.

Cloud 101 – Understanding the Basics Chapter 1

[15]

Building cloud-native applications
Cloud-native applications are specifically designed and implemented to operate in cloud-
only environments. The nature of the application, infrastructure requirements, and data
volumes can significantly influence the decision to use the cloud. Smaller organizations and
startups often use the cloud for all their infrastructure and software/applications needs.
Many such organizations also offer their products on a subscription-based licensing model
to their customers (SaaS model).

Applications having wide variability in their usage patterns are great candidates for the
cloud. The infrastructure costs in such cases can be reduced significantly by scaling up
resources to match the increased demand, and scaling down subsequently to serve lighter
loads. Similarly, it is common to scale up for a specific task, such as training a machine
learning model (at certain intervals) instead of maintaining high capacity infrastructure,
continuously. Specialized workloads requiring high memory, short bursts of high-compute
server usage, GPUs, and so on, can leverage the ability to provision resources on demand
(as per the requirements). For example, running large-scale deep learning workloads
typically require GPU-based instances for quicker turnaround times. These server instances
can be spun up and used, only when they are actually required.

Both streaming applications with incoming data at very high velocities and batch systems
with very high data volumes, can benefit from easy availability and scalability of cloud
resources. Additionally, applications using unstructured data such as vast document
corpuses, image repositories, and audio and video libraries, can leverage the storage and
processing power available on-tap in the cloud. The variety and number of ready-to-use
cloud services that are available (via simple APIs) to developers, allows them to build
applications without having to worry about the complexities of the underlying service.

We would like to conclude our introduction to cloud computing by getting you started on
AWS, right away. The next section will help you set up your AWS account and familiarize
you with the AWS management console.

Setting up your AWS account
You will need to create an account on Amazon before you can use the Amazon Web
Services (AWS). Amazon provides a 12-month limited fully functional free account which
can be used to learn the different components of AWS. With this account, you get access to
many services provided by AWS but there are some limitations based on resources
consumed. The list of AWS services is available at http:/ /aws. amazon. com/ free.

http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free

Cloud 101 – Understanding the Basics Chapter 1

[16]

Creating a new AWS account
We are assuming that you do not have a pre-existing AWS account with Amazon (in case
you do then please feel free to skip this section).

Point your browser to http:/ / aws. amazon. com/ free and click on Create a Free1.
Account.

Click on Create a new AWS account, as shown:2.

http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free
http://aws.amazon.com/free

Cloud 101 – Understanding the Basics Chapter 1

[17]

Enter your email address, select I am a new user option, and then click on Sign-3.
in using our secure server button:

A series of intuitive screens shown, as follows, will guide you easily through the4.
process of creating an AWS account. Provide your name, email address, and a
password in the form. Click on the Create account button to proceed to the next
step:

Cloud 101 – Understanding the Basics Chapter 1

[18]

Provide the Contact Information details as requested in the form shown here.5.
Select Personal Account for your initial learning purposes. Amazon uses this
information for billing and invoicing:

Cloud 101 – Understanding the Basics Chapter 1

[19]

Provide Payment Information in the form as shown in the following screenshot.6.
When you create an AWS account and sign up for services, you are required to
enter the payment information. Amazon will execute a $1 transaction against the
card to confirm its validity:

Next, Amazon executes an identity verification step. It includes a call back via an7.
automated system to verify your telephone number. You will also need to enter a
four digit PIN (displayed on your screen) when prompted. After the verification
process is completed, click on Continue to select your Support Plan button:

Cloud 101 – Understanding the Basics Chapter 1

[20]

Select your Support Plan: You can subscribe to one of: Basic, Developer,8.
Business, or Enterprise plans. We recommend subscribing to the Basic plan at
this stage. The Basic plan costs nothing but is also limited. You should one of the
other plans for production accounts. However, the Basic plan is an acceptable
option for learning purposes. Click on Continue to proceed to the next step:

Cloud 101 – Understanding the Basics Chapter 1

[21]

At Confirmation stage, you have completed all the steps requiring your input for9.
setting up an AWS account (see all the steps checked at the top of your screen as
shown). Click on Launch Management Console:

At this stage, you have successfully created an AWS account, and you are ready10.
to start using the services offered by Amazon Web Services. On clicking Sign-in
to the Console button, you will be requested to log in:

Exploring the AWS management console
The AWS management console is the central location from where you can access all
Amazon services. The management console has links to the following:

The home screen of the console is shown as follows:

Cloud 101 – Understanding the Basics Chapter 1

[22]

Click on All services to expand the display. This view lists all the AWS services
available in a specific Amazon region. Clicking on any one of these launches the
dashboard for the selected service:

Cloud 101 – Understanding the Basics Chapter 1

[23]

Shortcuts for Amazon Web Services: On the console management screen you
can create shortcuts of frequently accessed services by clicking on the pin (located
after the Services and the Resource Groups links) in the title bar. We can drag
and drop the services from the list to the title bar to add it:

Cloud 101 – Understanding the Basics Chapter 1

[24]

The modified title bar after adding EC2, S3, RDS and VPC components to it is as
shown:

Account-related information: This allows you to access your account-related
data. It includes security credentials needed to access the AWS resources, and the
My Billing Dashboard option gives you real-time information on your current
month’s billing:

Amazon regions: This option allows you to access the Amazon Web Services in a
specific region. For example, the list of Amazon Web Services, shown earlier,
were for the Asia Pacific (Mumbai) region:

Cloud 101 – Understanding the Basics Chapter 1

[25]

Help: Click on the Support menu (located on the title bar) to access help-related
items. You can navigate to help, forums and support pages:

Services: Click on the Services menu (located on the title bar) to access specific
dashboards. For example, click the EC2 menu item to open the EC2 Dashboard:

EC2 Dashboard: Shows the summary of EC2 resources and service health
information for the region and associated Availability Zones. You can also launch
a new EC2 instance from here:

Cloud 101 – Understanding the Basics Chapter 1

[26]

Summary
In this chapter, we introduced you to a few cloud computing concepts and terminologies.
We described the basic features of public, private, and hybrid clouds. We introduced the
main cloud delivery models, namely, IaaS, PaaS, and SaaS. We described various multi-
tenancy models, and some of their main implications and challenges. We also described
typical cloud-based workloads including both traditional in-premise systems and new
generation applications built for cloud-only environments. Finally, we listed the steps for
creating your AWS account and described the salient features of the AWS management
console.

With the basics out of the way, in Chapter 2, Designing Cloud Applications – an Architect’s
Perspective, we will describe some familiar and not-so familiar architectural best practices in
the cloud context. We will deep dive into the technical details of how multi-tenanted cloud
applications are different from traditional multi-tiered applications. We will also walk you
through creating a sample application (using Spring and MySQL) that will be used to
illustrate key cloud-application design concepts through the rest of this book.

2
Designing Cloud Applications

As an architect, you should have come across terms such as loosely coupled, multitier, service
oriented, highly scalable, and so on. These terms are associated with architectural best
practices, and you will find them listed in the first couple of pages of any system
architecture document. These concepts are generally applicable to all architectures, and the
cloud is no exception.

In this chapter, we want to highlight how these are accomplished on the cloud. You will
notice that the design principles and best practices for developing application architectures
on the cloud, largely remain the same as for on-premise architectures. However, you need
to be aware of certain peculiarities specific to the cloud environment, in order to architect
scalable, available and secure cloud applications. For example, if you are architecting a web-
scale application, you need to take into consideration the ability to scale up and down,
automatically, depending on the load. What are the implications of such auto scaling on
your design?

One of the major differences in cloud-based SaaS applications and on-premise enterprise
applications is multi-tenancy. We will consider key architectural questions, such as: what
are some of the design considerations of multi-tenancy? How do you design for UI,
services, and data multi-tenancy in a multitier architecture?

We will also introduce architectural patterns being used for machine learning workloads
and streaming applications on the cloud.

Designing Cloud Applications Chapter 2

[28]

More specifically, we will describe the familiar and not-so familiar architectural best
practices in the cloud context by covering the following topics:

Multitier architecture on the cloud
Designing for multi-tenancy including data security and extensibility
Designing for scale
Automating infrastructure
Designing for failure
Parallel processing
Designing for performance
Designing for eventual consistency
Designing for machine learning workloads and streaming applications
Estimating your cloud computing costs
Sample application – a typical e-commerce web application

Introducing cloud-based multitier
architecture
A simple three-tier architecture consists of a web tier, an application or business tier, and
the data tier. These tiers are ordinarily implemented using web servers, application servers,
and databases, respectively.

The following figure illustrates tiered architecture on the cloud. This architecture supports
auto scaling and load balancing of web servers and application servers. Further, it also
implements a master-slave database model across two different zones or data centers
(connected with high speed links). The master database is synchronously replicated to the
slave. Overall, the architecture represents a simple way to achieve a highly scalable and
highly available application in a cloud environment.

Designing Cloud Applications Chapter 2

[29]

Cloud applications can be deployed at multiple locations. Typically, using AWS
terminology, these locations are regions (that is, separate geographical areas) or zones (that
is, distinct locations within a region connected by low-latency networks). It is also possible
to separate out the tiers across two different zones regions to provide for a higher level of
redundancy including data center wide or zone-level failures or unavailability. We need to
consider network traffic flow and data synchronization issues between the regions while
designing high-availability architectures across multiple regions. Such issues are discussed
in more detail in Chapter 5, Designing for and Implementing High Availability.

Designing Cloud Applications Chapter 2

[30]

The following architecture diagram illustrates this architecture:

Designing for multi-tenancy
The major benefit of multi-tenancy is cost savings due to shared infrastructure and
operational efficiency of managing a single instance of the application across multiple
customers or tenants. However, multi-tenancy introduces complexity, and issues can arise
when a tenant's action or usage can affect the performance and availability of the
application for other tenants on the shared infrastructure. In addition, security,
customization, upgrades, recovery, and so on, requirements of one tenant can create issues
for other tenants and/or introduce further complexity.

Designing Cloud Applications Chapter 2

[31]

Additionally, customers are concerned about their business-critical data residing on public
cloud infrastructure (in the hands of a third-party SaaS application provider). It is of vital
importance to ensure that the data architecture is robust and secure to satisfy the security
standards, privacy policies, regulatory requirements, etc. in place at large enterprises (as
well as smaller businesses). For example, businesses in the financial or healthcare sector are
governed by a host of very strict regulatory requirements in terms of privacy, and location
and usage of customer data. We need to have strict access control mechanisms to ensure a
tenant does not access resources belonging to a different tenant. Simultaneously, we also
need to ensure that mechanisms we use are operationally cost-effective and easy to
administer.

Customization requirements can easily derail a SaaS product company’s business model.
Handling differences in data requirements, UI interfaces, business logic, and business
workflows requires careful design and implementation across the tiers. In addition,
provisioning new tenants, measuring resource usage per tenant, and being able to respond
to differences in Quality of Service SLAs per tenant can impose further strain on designers
of such applications.

In the multi-tenancy models discussed in Chapter 1, Cloud 101 – Understanding the Basics,
we discussed models that may lie anywhere on the shared-nothing to share-everything
continuum. While technical ease may be a key factor from the IT department’s perspective,
the cloud architect should never lose sight of the business implications and costs of
selecting the appropriate approach to implementing multi-tenancy.

Whatever the multi-tenancy model, the data architecture needs to ensure robust security,
extensibility, and scalability in the data tier. For example, storing a particular customer’s
data in a separate database leads to the simplest design and development approach. Having
data isolation is also the easiest and the quickest to both understand, and explain to your
customers.

It is very tempting to offer tenant-specific customizations when each
tenant’s data is stored in separate databases. However, this is primarily
done to separate data and associated operations, and not to arbitrarily
allow dramatic changes to the database schema per tenant.

In this model, suitable metadata is maintained to link each database with the correct tenant.
In addition, appropriate database security measures are implemented to prevent tenants
from accessing other tenants' data. From an operations perspective, backups and restores
are simpler for separate databases as they can be executed without impacting other
customers. However, this approach can lead to higher infrastructure and licensing related
costs.

Designing Cloud Applications Chapter 2

[32]

Typically, you would offer this approach to your bigger customers who may be more
willing to pay a premium to isolate their data. Larger enterprise customers prefer database
isolation for higher security, or in some cases to comply with their security policies. On a
related note, such customers may also demand more customization.

While architecting multi-tenanted applications, pay particular attention to
the expected number of tenants, storage per tenant, expected number of
concurrent users, regulatory and policy requirements, and so on. If any of
these parameters are heavily skewed in favor of a particular tenant then it
may be advisable to isolate their data.

For applications that have a few tables in their database schema, an approach that shares
the database server instance across multiple tenants but has a separate database schema for
each tenant can be used. This approach is relatively simple to implement and offers
flexibility for custom tables to be defined per tenant. However, data restore for a particular
tenant can impact other tenants hosted on the same database instance. This approach is
often a preferred approach as it can reduce costs while separating out the data of each
tenant.

In a shared database, with a shared schema, approach, the costs are minimized but the
complexity of the application is much greater. This model works well for cost-conscious
customers. However, restoring a customer's data is complicated, as you will be restoring
specific rows belonging to a specific tenant while other customers are using the system.
Aside from possibly impacting other tenants using the shared database, it can significantly
add complexity to scheduling such operations and communicating about them to all other
tenants.

In cloud architectures, the main factors to consider while implementing multi-tenancy are
data security, extensibility, and scalability.

Addressing data-at-rest security requirements
There are two levels of security to be considered; at the tenant level (typically, an
organization) and at the end-user level, of a given tenant. In order to implement a security
model you need to create a database access account at the tenant level. This account can
specify (using ACLs) the database objects accessible to a specific tenant. Then at the
application level, you will need to prevent users from accessing any data they are not
entitled to. A security token service can be used to implement the access at the tenant level.

Designing Cloud Applications Chapter 2

[33]

In the approaches that implement multi-tenancy by having either separate databases or
separate schema per tenant, you can restrict access tat the database or the schema level for a
particular tenant. The following diagram depicts a very common scenario where both these
models are present in a single database server instance:

If the database tables are shared across tenants then you need to filter data access by each
tenant. This is accomplished by having a column that stores a tenant ID per record (to
clearly identify records that belong to a specific tenant). The figure in the next section shows
a set of tables with the tenant id column. In such a schema, a typical SQL statement will
contain a where-clause based on the tenant id being equal to the security id of the user
account, namely an account belonging to the tenant.

Designing Cloud Applications Chapter 2

[34]

Aside from database level security, organizational policies or regulatory requirements can
mandate securing your data at rest. The options for implementing encryption to protect
your data can range from fully automated solutions to manual ones to be implemented on
the client side. There are several solutions available from the cloud service provider and
third party vendors to implement these security models. This topic will be discussed in
detail in Chapter 6, Designing for and Implementing Security.

Regardless of the approach, it is a good practice to encrypt sensitive data fields in your
cloud database and storage. Encryption ensures that the data remains secure even if a non-
authorized user accesses it. This is more critical for shared database/schema models. In
many cases, encrypting a database column that is part of an index can lead to full table
scans. Hence, try not to encrypt everything in your database as it can lead to poor
performance. Therefore, it is important to carefully identify sensitive information fields in
your database, and encrypt them more selectively. This will result in the right balance
between security and performance.

It is a good idea to store a tenant id for all records in the database and
encrypt sensitive data regardless of which approach you take for
implementing data multi-tenancy. A customer willing to pay a premium
for having a separate database might want to shift to a more economical
shared model later. Having a tenant id and encryption already in place can
simplify such a migration.

Addressing data extensibility requirements
Having a rigid database schema will not work for you across all your customers. Customers
have their specific business rules and supporting data requirements. They will want to
introduce their own customization to the database schema. However, ensure that you don't
change your schema for a tenant to an extent that your product no longer fits into an SaaS
model. But you do want to bake in sufficient flexibility and extensibility to handle the
custom data requirements of your customers (without impacting subsequent product
upgrades or patch releases).

Designing Cloud Applications Chapter 2

[35]

One approach to achieving extensibility in the database schema is to pre-allocate a bunch of
extra fields in your tables, which can then be used by your customers to implement their
own business requirements. All these fields can be defined as string or varchar fields. You
can also create an additional metadata table to further define a field label, data type,
field length, and so on, for each of these fields on a per tenant basis. You can choose to
create a metadata table per field or have a single metadata table for all the extra fields in the
table. Alternatively, you can introduce an additional column for the table name to have a
common table describing all custom fields (for each tenant) across all the tables in the
schema.

This approach is depicted in the following figure. Fields 1 to 4 are defined as extra columns
in the customer table. Further, the metadata table defines the field labels and data types.

Designing Cloud Applications Chapter 2

[36]

A second approach takes a name-value pair approach, where you have a main data table
that points to an intermediate table containing the value of the field and a pointer to a meta
data table that contains the field label, data type, and so on, information. This approach cuts
out potential waste in the first approach but is obviously more complicated to implement.

Designing Cloud Applications Chapter 2

[37]

A variation on these two approaches is to define an extra field per table and store all custom
name-value pairs per tenant in an XML or JSON format.

A third approach is to add columns per tenant as required. This approach is more suitable
in the separate database or separate schema per tenant models. However, this approach
should generally be avoided as it leads to complexity in application code, that is, handling
an arbitrary number of columns in a table per tenant. Further, it can lead to operational
headaches during upgrades.

Designing Cloud Applications Chapter 2

[38]

You will need to design your database schema carefully for providing
custom extensions to your database schema as this can have a ripple effect
on the application code and the user interface.

In addition to introducing a tenant id column in the database, if the application has web
service interfaces then these services should also include the tenant id parameter in its
request and/or response schema. To ensure a smooth transition between shared and
isolated application instances, it is important to maintain tenant ids in the application tier.
In addition, tenant aware business rules can be encoded in a business rules engine, and
tenant specific workflows can be modeled in multi-tenanted workflow engine software
using Business Process Execution Language (BPEL) process templates.

In cases where you end up creating a tenant-specific web service, you will need to design it
in a manner that least impacts your other tenants. A mediation proxy service that contains
routing rules can help in this case. This service can route the requests from a particular
tenant's users (specified by the tenant id in the request) to the appropriate web service
implemented for that tenant.

Similarly, the front end or the UI can also be configured for each tenant to provide a more
customized look-and-feel (for example, CSS files per tenant), tenant specific logos, and color
schemes. For differences in tenant UIs, portal servers can be used to serve up portlets,
appropriately.

If different service levels need to be supported across tenants, then an instance of the
application can be deployed on separate infrastructure for your higher-end customers. The
isolation provided at the application layer (and the underlying infrastructure) helps avoid
tenants impacting each other by consuming more CPU or memory resources than originally
planned.

Logging also needs to be tenant aware (that is, use tenant id in your log record format). You
can also use other resources such as queues, file directories, directory servers, caches, and so
on, for each of your tenants. These can be done in a dedicated or separated out application
stacks (per tenant). In all cases, make use of the tenant id filter for maximum flexibility.

Designing Cloud Applications Chapter 2

[39]

Understanding cloud applications design
principles
In this section, we will cover key guiding principles that are useful while designing cloud-
based applications. More specifically, we will introduce designing for scale, automated
infrastructure, failures, parallel processing, performance, and eventual consistency.

Designing for scale
Traditionally, designing for scale meant carefully sizing your infrastructure for peak usage
and then adding a factor to handle variability in load. At some point, when you reached a
certain threshold on CPU, memory, disk (capacity and throughput) or network bandwidth,
you would repeat the exercise for handling increased loads and initiate a lengthy
procurement and provisioning process. Depending on the application, this could mean a
scale up (vertical scaling) with bigger machines or scale out (horizontal scaling) with more
machines being deployed. Once deployed, the new capacity would be fixed (and run
continuously) whether the additional capacity was being utilized fully or not.

In cloud applications, it is easy to scale—both vertically and horizontally. Additionally, the
increase and the decrease in the number of nodes (in horizontal scalability) can be done
automatically to improve resource utilization and manage costs better.

Typically, cloud applications are designed to be horizontally scalable. In most cases, the
application services or the business tier is specifically designed to be stateless so that
compute nodes can be added or deleted with no impact to the functioning of the
application. If the application state is important then it can be stored externally using a
caching or storage service. Depending on the application, things like session state can also
be provided by the caller in each call, or be rehydrated from a data store.

Horizontal scaling in the data tier is usually achieved through sharding. Sharding splits a
database across two or more databases to handle higher query or data volumes than what
can be effectively handled by a single database node. In traditional application design, you
would choose an appropriate sharding strategy and implement all the logic necessary, to
route the read/write requests to the right shard. This results in increased code complexity.
Instead, if you choose to use a PaaS cloud database service, the responsibility for scalability
and availability is largely taken care of by the cloud provider.

An architecture comprising of loosely coupled components is a well-accepted approach and
best practice. This is especially true while building highly scalable systems. Loose coupling
allows you to distribute your components and scale them, independently.

Designing Cloud Applications Chapter 2

[40]

The most commonly used design approaches to implement loose coupling is to introduce
queues between major processing components in your architecture. Most PaaS cloud
providers offer a queuing service that can be used to design for high concurrency and
unusual spikes in load. In a high velocity data pipeline type application, the buffering
capability of queues is leveraged to guard against data loss when a downstream processing
component is unavailable, slow or has failed.

The following diagram shows a high capacity data processing pipeline. Notice that queues
are placed strategically between various processing components to help match the
impedance between the inflows of data versus processing components' speed.

Typically, the web tier writes messages or work requests to a queue. A component from the
services tier then picks up this request from the queue and processes it. This ensures faster
response times for end users as the queue-based asynchronous processing model does not
block on responses.

In a traditional architecture, you may have used message queues with simple enqueue and
dequeue operations to add processing requests and remove them for processing from the
queues, subsequently. However, implementing queue-based architectures on the cloud is a
little different. This is because your queue may be distributed across several nodes,
internally, by the cloud service, your messages automatically replicated for you across
several nodes, and also because one of these nodes may be unavailable when your request
arrives or fails during the processing of your request.

In order to design more effectively, it is important to understand that:

The message order is not guaranteed to be preserved between the enqueue and
dequeue operations. If there is a requirement to strictly preserve this sequence
then you need to include sequencing information as a part of the content of each
message.

Designing Cloud Applications Chapter 2

[41]

It may so happen that one of the replicas of the message may not get deleted (due
to a hardware failure or the unavailability of the node). Hence, there is a chance
that the message or processing request would get processed twice. It is
imperative to design your transactions to be idempotent in such circumstances.
As the queue is distributed across several servers, it is also possible that no
messages or not all messages are returned in any given polling request. The cloud
queuing service is not guaranteed to check all the servers for messages against
each polling request. However, a message not returned in a given polling request
will be returned in a subsequent one.
Due to the variability in the rate of incoming requests, a lot of polling requests (as
described previously) need not return any requests for processing. For example,
online orders in an online shopping site may show wide variability between
daytime and night hours. The empty polling requests are wasteful in terms of
resource usage and more importantly, incur unnecessary costs. One solution to
reduce these costs is to implement the exponential back-off algorithm (that
steadily increases the intervals between empty polling requests). But this
approach has the down side of not processing requests soon after their arrival. A
more effective approach is to implement long polling. With long polling the
queuing service waits for a message to become available, and returns it if the
message arrives within a configurable time period. Long polling for a queue can
easily be enabled through an API or a UI interface.
In a cloud queue service, it is important to differentiate between a dequeue and a
delete operation. When a message is dequeued, it is not automatically deleted
from the queue. This is done to guard against the possibility of failure in the
message reaching the processing component (due to a connection or a hardware
failure). Therefore, when a message is read off the queue and returned to a
component, it is still maintained in the queue. However, it is rendered invisible
for a period of time so that other components do not pick it up for processing. As
soon as the queue service returns the message, a visibility timeout clock is started.
This timeout value is usually configurable. What happens if your processing
takes longer than the visibility timeout? In such an eventuality, it is a good
practice to extend the time window through your code to avoid the message
becoming visible again, and getting processed by another instance of your
processing component.
If your application requirements do not require each message to be processed
immediately upon receipt, you can achieve greater efficiency and throughput in
your processing by batching a number of requests and processing them together
through a batch API.

Designing Cloud Applications Chapter 2

[42]

As charges for using cloud queuing services are usually based on the
number of requests, batching requests can reduce your bills as well.

It is important to design and implement a handling strategy for messages that
lead to fatal errors or exceptions in your code. These messages will repeatedly get
processed until the default timeout set for how long a message should be retained
in the queue. This is wasteful processing and leads to additional charges on your
bill. Some queuing services provide a dead letter queue facility to park such
messages for further review. However, ensure you place a message in the dead
letter queue after a certain number of retries or dequeue the count.

The number of messages in your queue is also a good metric to use for
auto scaling your processing tier.

Depending on the number of different types of messages and their processing
duration, it is a good practice to have separate queues for them. In addition,
consider having a separate thread to process each queue instead of a single
thread processing multiple queues.

Automating cloud infrastructure
During failures or spikes in load you do not want to be provisioning resources, identifying
and deploying the right version of the application, configuring parameters (for example,
database connection strings), and so on. Hence, you need to invest in creating ready-to-
launch machine images, continuously monitor your system metrics to dynamically take
action such as auto scaling, develop scripts for automated deployments, centrally store
application configuration parameters, and boot new instances quickly by bootstrapping
your instances, and so on.

It is possible to automate almost everything on the cloud platform via APIs and scripts, and
you should attempt to do so. This includes typical operations, deployments, automatic
recovery actions against alerts, scaling, and so on. For example, your cloud service may also
provide an auto healing feature. You should leverage this feature to ensure failed/unhealthy
instances are replaced and restarted with the original configurations.

Designing Cloud Applications Chapter 2

[43]

Designing for failure
Assume all things will fail. Ensure you carefully review every aspect of your cloud
architecture, and design for failure scenarios against each one of them. In particular, assume
hardware will fail, cloud data center outages will happen, database failure or performance
degradation will occur, expected volumes of transactions will be exceeded, and so on. In
addition, in an auto-scaled environment, for example, nodes may be shutdown in response
to load getting back to normal levels after a spike. Nodes may also be rebooted by the cloud
platform. There can be unexpected application failures. In all these cases, the design goal
should be to handle such error conditions gracefully, and minimize any impact to user
experience.

There should be a strong preference to minimize human or manual intervention. Hence, it is
better to implement strategies using services made available by the cloud platform to
reduce the chances of failures or automate recovery from such failures.

Following are a list of key design principles that will help you handle failures in the cloud
more effectively:

Store no application state on your servers because if your server gets killed then
you will not lose any application state. Sessions or logging records should never
be stored to local filesystem.
Logging should always be to a centralized location, for example, using a database
or a third-party logging service. If you need to store information temporarily for
subsequent processing then use the cloud platform's reliable queuing service.
This is relevant not only in the case of server failures but also applicable in server
scale out situations. During the scaling down process you don’t want to lose
information by storing it on the local filesystem.
Your log records should contain additional cloud-specific information to help the
debugging process, for example, instance ID, region, availability zone, tenant ID,
and so on. Centralized logging across multiple tenants (in a shared everything
configuration) can get voluminous. Therefore, it helps to use tools for viewing,
searching, and filtering log records.
A request passes through numerous components (for example, network
components) along its journey to the server side processing components. An error
can occur anywhere or anytime during the life of the request. These errors may
typically result in a server error (that is, a 5 xx series error). In such cases, it is
normal for the application code to implement retry logic. The cloud provider's
SDKs usually provide features that make implementing this retry logic simpler.

Designing Cloud Applications Chapter 2

[44]

Remember to log your retry attempts. If you notice a high number of retry
attempts then it’s a good idea to review the sizing of your infrastructure.
You will most likely need to provision additional resources to reduce error
or failure rates, and the resultant retry attempts.

The cloud platform may restrict the number of API requests you can issue in a
given time period. Hence, in addition to the total number of retries, you need to
ensure you do not exceed the allowed request rates by implementing delays
between your retry attempts. This is typically implemented using an exponential
back-off algorithm where you progressively introduce longer delays between
your retry attempts.
Avoid single-points-of-failure. Plan to distribute your services across multiple
regions and zones (that is, different data centers in the same region). This will
minimize the chances of an application outage due to failures in individual
instances, an availability zone, or a region.

Sometimes running multiple instances is cost prohibitive for smaller organizations (very
common for start-ups new to the cloud). If you want to run a single instance then ensure
you still configure it for auto scaling. Set the minimum and maximum number of servers
equal to one. This will ensure that in case your instance becomes unhealthy then the cloud
service can replace it with a new instance within a few minutes of downtime.

In some cases, for example, highly interactive applications, it is best to just display a simple
message to the end user to resubmit the transaction or refresh the screen (the resulting retry
will likely succeed).

Designing for parallel processing
It is a lot easier to design for parallelization on the cloud platform. You need to use parallel
designs throughout your architecture from data ingestion to its processing. So, use
multithreading for parallelizing your cloud service requests, distribute load using load
balancing, ensure multiple processing components or service endpoints are available via
horizontal scaling, and so on.

Designing Cloud Applications Chapter 2

[45]

Exploit both multithreading and multi-node processing. For example, using multiple
concurrent threads for fetching objects from cloud data storage service is a lot faster than
fetching them sequentially. In the pre-cloud or non-cloud environments, parallel processing
across a large number of nodes was a difficult and expensive problem to solve. However,
with the advent of cloud it has become very easy to provision a large number of compute
instances within minutes. These instances can be provisioned, used and then released using
APIs. In addition, frameworks such as Apache Spark and Hadoop have reduced the earlier
complexity and expenses involved in building large-scale distributed applications.

Designing for performance
When an application is deployed to the cloud, latency can become a big issue. There is
sufficient evidence that shows that latency leads to loss in business. It can also severely
impact user adoption.

You will need to attack the latency issue through approaches that can improve the user
experience by reducing the perceived and real latency. For example, some of the techniques
you can use include rightsizing your infrastructure, using caching and placing your
application and data closer to your end users.

Perceived latency can be reduced by pre-fetching data that is likely to be used by the
application, or caching frequently used pages/data. Additionally, you can design your
pages in a manner that after they are loaded, the downloaded page doesn’t need to traverse
the network for most of the subsequent navigation. You can also use AJAX, or similar
technology to reduce perceived latency of web pages loading.

Ensure that the data required by your processing components are located as close to each
other as possible. Use caching and edge locations to distribute static data as close to your
end users as possible. Performance oriented applications use in-memory application caches
to improve scalability and performance by caching frequently accessed data. On the cloud,
it is easy to create highly available caches and automatically scale them by using the
appropriate caching service.

Most cloud providers maintain a distributed set of servers in multiple data centers around
the globe. These servers are used to make it easy to use Content Delivery Network (CDN)
to serve content to end users from locations closest to them. This service is made available
to you by the cloud service provider through an easy-to-use web service interface. The
distributed content could be HTML, CSS, PHP, or image files in regular web applications.
CDNs can also be used for rich media and content sites with live streaming video.

Designing Cloud Applications Chapter 2

[46]

The content is distributed to various edge locations, and is served to end users from points
closest to them. This reduces latency while simultaneously improving the performance of
your web application/site, significantly.

The following figure shows how a typical web application hosted on the cloud can leverage
the CDN service to place content closer to the end user. When an end user requests content
using the domain name, the CDN service determines the best edge location to serve that
content. If the edge location does not have a copy of the content requested, then the CDN
service pulls a copy from the origin server (for example, the web servers in Zone 1). The
content is also cached at the edge location to service any future requests for the same
content:

Designing Cloud Applications Chapter 2

[47]

Designing for eventual consistency
Depending on the type of applications you have designed in the past, you may or may not
have come across the concept of eventual consistency (unless you have worked extensively
on distributed transactions oriented applications). However, it is fairly common in the
cloud world. After a data update, if your application can tolerate a few seconds delay before
the update is reflected across all replicas of the data then eventual consistency can lead to
better scalability and performance.

Cloud platforms typically store multiple replicas of the data to ensure data
durability. For example, the replica of a database table could be stored in
several geographically distributed locations.

Normally, eventual consistency is the default behavior in a cloud data service. In case the
application requires consistent reads at all times then some cloud data services provide the
flexibility to specify strongly consistent reads. However, there are several cloud data
services that support the eventually consistent option only.

Another approach used to improve scalability and performance beyond the capacity, that is
CPU or I/O or both, of a single instance of your database, is to deploy one or more read
replicas close to your end users. This is typically used for read-heavy applications. The read
traffic can be routed to these replicas for reduced latencies. These replicas can also support
resource heavy queries for online report generation or serve read-only requests, while your
main database is down for maintenance or operations activities.

Note that changes to the source database are applied to the read replicas continuously, but
there is a small lag involved. Hence, read replicas are considered to be eventually
consistent.

Understanding emerging cloud-based
application architectures
In this section, we will describe common architecture patterns and deployment of some of
the main processing models being used for batch processing, streaming applications, and
machine learning pipelines. The underlying architecture for these processing models are
required to support ingesting very large volumes of various types of data arriving at high
velocities at one end, while making the output data available for use by analytical tools,
reporting and modeling software, at the other.

Designing Cloud Applications Chapter 2

[48]

The software platforms supporting such applications have the necessary features and
support the key mechanisms required to access data across a diverse set of data sources and
formats, and prepare it for downstream applications, either as low-latency streaming data
or high-throughput historical data stores. For example, Apache Spark is an emerging
platform that leverages distributed storage and processing frameworks to support
querying, reporting, analytics and intelligent applications at scale.

For more details on Apache Spark-based architectures, refer to Learning
Spark SQL, Aurobindo Sarkar, Packt Publishing.

The following figure shows a high-level architecture that incorporates these requirements in
typical Spark-based batch and streaming applications:

Designing Cloud Applications Chapter 2

[49]

Understanding polyglot persistence
As organizations start employing big data and NoSQL-based solutions across a number of
projects, a data layer comprising of RDBMSs alone is no longer the best solution for all the
use cases in a modern enterprise application. The following figure illustrates a situation that
is rapidly disappearing across the industry:

A more typical scenario comprising of multiple types of data stores is shown in the
following figure. Applications today use several types of data stores that represent the best
fit for a given set of use cases. Using multiple data storage technologies, chosen based upon
the way data is being used by applications, is called polyglot persistence. For example,
Apache Spark is an excellent enabler of this and other similar persistence strategies in the
cloud or on-premise deployments:

>

Designing Cloud Applications Chapter 2

[50]

In the next section, we discuss the key concepts of batch and stream processing
architectures.

Understanding Lambda architecture
The Lambda architectural pattern attempts to combine the best of both worlds—batch
processing and stream processing. This pattern consists of several layers: Batch Layer
(ingests and processes data on persistent storage such as HDFS and S3), Speed Layer
(ingests and processes streaming data, that has not been processed by the batch layer yet),
and the Serving Layer that can combine outputs from the batch and speed layers to present
merged results. This is a very popular architecture in Spark-based cloud environments
because it can support both batch and speed layer implementations with minimal code
differences between the two.

The following figure depicts the Lambda architecture as a combination of the batch
processing and stream processing:

In the next section, we discuss a simpler architecture called Kappa architecture that
dispenses with the batch layer entirely and works with stream processing in the speed layer
only.

Designing Cloud Applications Chapter 2

[51]

Understanding Kappa architecture
Kappa architecture is simpler than the Lambda pattern as it comprises of the speed and
serving layers only. All the computations occur as stream processing and there are no batch
recomputations done on the full dataset. Recomputations are only done to support changes
and new requirements.

Typically, the incoming real-time data stream is processed in memory and is persisted in a
database or HDFS, to support queries, as illustrated in the following figure:

Kappa architecture can be realized using a queueing solution such as Apache Kafka or
Kinesis. If the data retention times are bound to several days to weeks then Kafka could also
be used to retain the data for the limited period of time.

Deploying cloud-based machine learning
pipelines
We observe that only a small fraction of real-world ML systems are composed of ML code
(the small black box in the figure shown here). However, the infrastructure surrounding
this ML code is vast and complex. There are many services offered by cloud providers to
provide and manage the infrastructure required for modern machine learning applications:

Designing Cloud Applications Chapter 2

[52]

The following figure illustrates a typical machine learning pipeline at a conceptual level.
However, real-life ML pipelines are a lot more complicated with several models being
trained, tuned, combined, and so on.

The following figure shows core elements of a typical machine learning application split
into two parts—the modeling including model training and deployed model (used on
streaming data to output the results):

Designing Cloud Applications Chapter 2

[53]

Typically, the data scientists experiment or do their modeling work in Python and/or R.
Their work is then re-implemented in Java/Scala before deployment in a production
environment. The enterprise production environments often consist of web servers,
application servers, databases, middleware, and so on. The conversion of prototypical
models to production-ready models, typically results in additional design and development
efforts that lead to delays in rolling out updated models. However, with cloud services and
platforms now available, this effort is reduced substantially as we will see in Chapter 8,
Designing a Big Data Application.

Deploying cloud-based machine learning models
The model scoring environments can be very diverse. For example, models may need to be
deployed in web applications, portals, real-time and batch processing systems, as an API or
a REST service, embedded in devices or in large legacy environments.

The technology stack can comprise Java Enterprise, C/C++, legacy mainframe environments,
relational databases, and so on. Additionally, non-functional requirements and customer
SLAs with respect to response times, throughput, availability and uptime can also vary
widely. However, in all cases our cloud deployment process will need to support A/B
testing, experimentation, model performance evaluation, and be agile and responsive to
business needs.

Typically, practitioners use various methods to benchmark and phase-in new or updated
models to avoid high-risk big bang production deployments. We will explore more on
deploying such applications in Chapter 10, Deploying a Big Data Application.

Estimating your cloud computing costs
Costs are central to designing for the cloud. Selecting the most appropriate options from a
wide variety of tunable parameters available for each of the services can make this a
challenging task. Typically, if you understand the costing for your compute nodes and
database services well, then you would have largely accounted for a big chunk of your
expected bill. Using an 80:20 principle can help you get to ballpark cost estimates, quickly.
Typically, if you understand the costing for your compute nodes and database services
well, then you would have largely accounted for a big chunk of your expected bill.

Designing Cloud Applications Chapter 2

[54]

Most cloud service providers make online calculators available to arrive at the ballpark
figures for your infrastructure. The following is a sample screenshot for provisioning AWS
EC2 instances (compute nodes) in a calculator provided by Amazon. The left margin
contains links to costing the various AWS services that you plan to provision for your
application:

The following figure is a sample screenshot of the AWS calculator’s monthly bill tab. This
tab presents the total costs you can expect on a monthly basis. These calculators are
typically very easy to use, and there is a lot of guidance and help available to select the
appropriate options for each of the services:

Designing Cloud Applications Chapter 2

[55]

The calculations and the totals obtained from these calculators is a good estimate, however
it is a snapshot-in-time or a static estimate. You will need to create several of these to
accurately reflect your costs through the product development life cycle. For example, you
will provision development, QA/test, staging, and production environments at different
times, and with different sizing and parameter values. In addition, you may choose to
shutdown all development and QA/test environments at the end of each work day, or bring
up the Staging environment only for load tests and a week prior to any production
migrations.

Cloud-service providers present you with an itemized bill that includes the details of your
resource usage. Compare the actual resource usage against your provisioned resources for
identifying tuning opportunities. This can help lower your cloud environment costs.

It is very important to understand your cloud resource usage and the associated costs in
your itemized bill. Track your bills closely for the first few months and at crucial times in
your product development. These include whenever you spin up new environments, do
load testing, run environments round-the-clock, provision a new service, or upgrade or
increase the number of your compute instances. It is also important to give a heads up to
finance or the leadership team when you expect the bills to show a spike or an uptick.

Designing Cloud Applications Chapter 2

[56]

A typical e-commerce web application
In this section, we go through the specifications of a typical e-commerce website which we
will develop and deploy on AWS infrastructure. We will leverage the AWS infrastructure to
reduce project timeline and also show you the specific AWS code needed to support your
non-functional requirements. However, this application is meant for illustrative purposes
and is not a production grade application.

The codebase for this application will be in Java and the framework used will be Spring 4.x
along with MySQL as the database. We will not delve into the detailed design or the
specifications as it is not in the scope of the book, nor shall we develop all the functional use
cases defined in the specifications. We will, however, dive deep into the non-functional
specifications as they tend to leverage the cloud services more.

Suppose electronics retailer, A1 Sales, has decided to create an e-commerce site to boost
their brand and revenues. A1 Sales has identified specific functional and non-functional
requirements that are typical of any e-commerce web application. A1 Sales has made the
decision not to invest in a data center and instead leverage public cloud infrastructure;
hence the e-commerce web application needs to be ready for the cloud from day one.

The top level functional requirements identified are:

The application shall allow users to browse and display detailed information of
the selected products
The application shall provide a shopping cart during online purchase
The application shall allow users to add/remove products in the shopping cart
before confirming a purchase
The application shall allow a user to register and create his/her credentials
The application shall authenticate user credentials before purchase of products
The application shall enable users to enter the shipping address during payment
process
The application shall enable users to enter payment information during the
payment process
The application shall send an order confirmation to the user through email
The application shall allow users to cancel an order
The application shall allow the addition/deletion/updating of a selected product
for an admin user

Designing Cloud Applications Chapter 2

[57]

The non-functional requirements identified are:

Operational cost: The architected solution for the e-commerce application should
have a low monthly operational cost as nothing is free on the cloud. The solution,
at a minimum, shall meet the minimum requirements for scalability, availability,
fault tolerance, security, and replication and disaster recovery.
Scalability: The cloud infrastructure shall scale the application up or down by
adding/removing application nodes from the network depending on the load on
the application.
Scalability: The architected solution shall be designed in a loosely coupled and
stateless manner which lends itself to scaling.
High availability: The architected solution will be designed in a manner that
avoids a single point failure in order to achieve high availability .
Fault tolerant: The application shall be coded to handle cloud failures to a
predefined limit.
Application security: The application shall use encrypted channels for
communications. All the confidential data shall be stored in an encrypted format.
All the files at rest shall be stored in an encrypted format.
Cloud infrastructure security: The cloud infrastructure shall be configured to
close all the unnecessary network ports with the help of a firewall. All the
compute instances on the cloud shall be secured with SSH keys.
Replication: All the data should be replicated in real time to a secondary location
to reduce the possibility of data loss.
Backups: All the data from the databases shall be backed up on a daily basis.
Disaster recovery: The architected solution shall be designed in a manner that
supports recovery from an outage with minimal human intervention using
automated scripts.
Design for failure: The architected solution shall be designed for failure, in other
words the application shall be designed, implemented and deployed for
automated recovery from failure.
The application shall be coded using open source software and open standards to
prevent vendor lock-in and drive costs down.

Designing Cloud Applications Chapter 2

[58]

Setting up your development environment
In this section, we show you how to download the source code from GitHub and run the A1
electronics e-commerce application. It is assumed the user has the following packages
installed in their development environment:

Eclipse or Spring Tool Suite (STS): Download link STS: http:/ /spring. io/
tools/sts Eclipse: https:/ / eclipse. org/ downloads/

JDK 1.8: Download link http:/ /www. oracle. com/ technetwork/ java/ javase/
downloads

Maven 3: Download link http:/ /maven. apache. org/ download. cgi

Git command line tools: Download link http:/ /git- scm. com/ downloads

Eclipse with Maven plugin (m2e): m2e is installed by default when using the
STS; you can install last M2Eclipse release by using the following update site
from within Eclipse Help | Install New Software (http:/ /download. eclipse.
org/technology/ m2e/ releases)

The following instructions are for mac OS X but not limited to, they can also be used for
Windows and Linux with minor or no modifications. It is assumed the readers have
familiarity with the tools and are able to compile and run code from STS. This application is
developed using Spring framework 4.x and Java 1.8.

Let's get started:

To begin with, create a folder a1electronics in your preferred workspace:1.

mkdir a1electronics

Next, we need to download the source code from the GitHub repository.

Switch to the created folder a1electronics and clone the source code from the2.
Git repository located at https:/ /github. com/ a1electronics/ ecommerce.

git clone https://github.com/a1electronics/ecommerce

Now you have the source code. The next step is to import the project in Eclipse or3.
STS or, if you are one of the impatient types, you can run it directly from the
command line.

http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce
https://github.com/a1electronics/ecommerce

Designing Cloud Applications Chapter 2

[59]

To import the project into STS, you will need to go to menu File | Import and4.
then select Existing Maven Projects as shown here and click on Next:

Designing Cloud Applications Chapter 2

[60]

In the next step shown in the following figure, you will need to point to the folder5.
where you checked out the application from the Git repository, as described in
the earlier section. Clicking on Finish will successfully import your project into
STS:

Designing Cloud Applications Chapter 2

[61]

Running the application
Now in order to run our application, let’s perform the following steps:

You can launch the imported project from within STS by selecting the project1.
from the Package Explorer and selecting the menu option Run. This will open a
pop-up window which is shown as follows:

Designing Cloud Applications Chapter 2

[62]

Select the Run On Server option and click on OK. This will open another popup2.
to select the installed web server from within STS, as shown in the following
figure. Clicking on Finish will launch the A1 electronics e-commerce application
from within the STS:

Designing Cloud Applications Chapter 2

[63]

You should see the following screen show up in your STS environment:3.

Building a war file for deployment
You have the option of creating a war file which can be deployed in any web server that
supports servlet containers. This can be done via the command line from the root of A1 e-
commerce project via a maven goal package.

mvn package

This will create a war file a1ecommerce.war in the folder called target, which is in the root
of the A1 e-commerce project.

Designing Cloud Applications Chapter 2

[64]

Application structure
The A1 electronics e-commerce project uses a Model-View-Controller
(MVC) architectural pattern. As the details of Spring and the MVC architecture are not in
the scope of this book, only the relevant parts are explained here. This MVC architecture
reflects in the structure of the code as shown in the following diagram:

Model: The following packages are the Model part of MVC architecture:
com.a1electronics.ecommerce.dbo: All the entities from the
database are mapped to Java objects along with their relationship
com.a1electronics.ecommerce.dao: A layer to access the
objects in the dbo layer and has generic functions to
add/remove/delete/update objects

Designing Cloud Applications Chapter 2

[65]

View: The views folder in the preceding figure is the View part of MVC
architecture. These are JavaScript/HTML pages which are returned in response to
users requests via the Controller. This is what gets rendered in the users' browser.
Controller: The package, com.a1electroncs.ecommerce.controllers, is the
Controller part of MVC architecture. This is where all the users' requests are
accepted and, depending on the application logic, redirected to the correct service
in the com.a1electroncs.ecommerce.controllers services layer package.

This MVC architecture is shown in the following figure:

Designing Cloud Applications Chapter 2

[66]

Summary
In this chapter, we explained the differences in design and implementation of cloud-based
applications. We reviewed some of the architectural best practices in the cloud context.
More specifically, we described multitiered, loosely coupled, and service oriented scalable
designs and their realizations on the cloud platform. We also went through the design
consideration and implementation approaches to multi-tenancy, and explored some of the
architectural patterns being used for streaming and machine learning applications. Finally,
we created a simple application that we intend to expand and elaborate in the coming
chapters to illustrate AWS concepts in detail.

After covering the cloud architectural principles in this chapter, we will get a lot more
specific in our coverage of cloud computing in the next chapter. We will cover AWS specific
cloud services, the AWS costing model, and provide guidance on your application
development environments. In addition, we will have hands-on exposure to defining the
cloud infrastructure required for the sample application created in this chapter.

3
Introducing AWS Components

This chapter will introduce you to some of the key AWS components and services. We will
also cover strategies to lower your cloud infrastructure costs and their influence on your
architectural decisions. Furthermore, this chapter will discuss the typical characteristics of
AWS Cloud application development environments, including development, testing,
staging, and production environments. Finally, we will walk you through the process of
setting up the AWS infrastructure for our sample application.

In this chapter, we will cover the following topics:

AWS components
Managing costs on the AWS cloud
Application development environments
Setting up the AWS infrastructure

Introducing AWS Components Chapter 3

[68]

AWS components
AWS offers a wide variety of cloud-based services. There has been a continuously growing
list of AWS services over the past few years with several of them in preview mode at any
given time. These services include compute, storage, database, migration, networking and
content delivery, security, analytics, AI, management tools, and many other products and
services available. These ready-to-use AWS services and SDKs significantly simplify and
accelerate the cloud application design, development, deployment, and maintenance-
related activities.

In the following sections, we will describe some of the key AWS services used by
developers and architects.

Amazon compute-related services
AWS offers several compute-related services to deploy and run your applications as virtual
servers, containers, or even as code. For example, with EC2, you can provision and scale
your compute infrastructure using a wide selection of instances that are optimized for
various use cases. You can also run stateless or stateful applications packaged as Docker
containers using Amazon EC2 Container Services (Amazon ECS), or run event-based
stateless applications with the AWS Lambda service.

Amazon EC2
Amazon EC2 is a web service that provides compute capacity in the AWS cloud. You have
several choices of instance types, operating systems, and software packages available. You
will need to choose an appropriate mix of instance types based on your specific use cases.
These instance types include general purpose, accelerated computing, compute-optimized,
memory-optimized, and storage-optimized instances. For example, you would choose
compute-optimized instances for your compute-intensive workloads and accelerated
computing instances for GPU-based processing, typically, used for deep learning
applications. In addition, each instance type includes one or more instance sizes to match
the scalability requirements of your specific workloads.

Amazon EC2 allows you to configure the memory, CPU, instance storage, and your choice
of operating system and applications. You can bundle the operating system, application
software, and associated configuration settings into an Amazon Machine Image (AMI).
Then, use it to provision or decommission multiple virtualized instances using web service
calls. EC2 instances can be resized and the number of instances scaled, up or down, to
match your requirements or demand.

Introducing AWS Components Chapter 3

[69]

Each AWS region comprises several Availability Zones (AZs) at distinct locations,
connected by low latency networks. EC2 instances can be launched in one or more
geographical locations or regions and also within one or more AZs belonging to a specific
region.

Amazon Elastic Block Storage (EBS) volumes provide network-attached persistent storage
to the EC2 instances. Elastic IP addresses allow you to allocate a static IP address and
programmatically assign it to an instance. You can enable monitoring on EC2 instances
using Amazon CloudWatch, and auto-scaling groups can be created, using the auto scaling
feature, to automatically scale available capacity (based on the CloudWatch metrics).

Amazon EC2 container service
The Amazon EC2 container service is a cluster management and configuration
management service. This service enables you to launch and stop container-enabled
applications via API calls.

AWS Lambda
The AWS Lambda service supports executing your code in response to certain events
within your application. Such events could include website clicks, image uploads, updates
to certain data fields, document transformation, indexing, anomaly detection, errors
detected in log files, sensitive or auditable events, unusual readings from sensors, and so
on. You can also send notifications using SNS in response to these events.

Other AWS compute-related services include AWS Batch (to plan, schedule, and execute
your batch jobs), AWS Elastic Beanstalk (for your application deployment and scalability
requirements), Amazon EC2 Container Registry (to store, deploy, and manage Docker
container images), and Amazon Lightsail (to launch and manage preconfigured virtual
private servers).

Amazon storage-related services
Amazon's cloud storage services include object storage (Amazon S3), block storage
(Amazon EBS), archival storage (Amazon Glacier), and file storage (Amazon Elastic File
System) services. We will briefly describe some of these services in the following sections.

Introducing AWS Components Chapter 3

[70]

Amazon S3
Amazon S3 is a highly durable and distributed data store. Using a web services interface,
you can store and retrieve large amounts of data as objects in buckets (containers). The
stored objects are also accessible from the web via HTTP. It supports the implementation of
stringent security and compliance policies on the stored data to ensure the security of data-
at-rest. S3 is also an economical storage option for massive amounts of data typically used
by analytics, IoT, and machine learning applications.

Amazon EBS
Amazon EBS is a highly available and durable persistent block-level storage volume for use
with Amazon EC2 instances. You can configure EBS with SSD (general purpose or
provisioned IOPS) or magnetic volumes. Each EBS volume is automatically replicated
within its Availability Zone (AZ).

Amazon Glacier
Amazon Glacier is a low-cost storage service that is typically used for archival and
backups. The retrieval time for data on Glacier, based on the option selected, varies from a
few minutes to several hours.

Other AWS storage services include Amazon Storage Gateway (which enables integration
between on-premise environment and AWS storage infrastructure) and AWS Import/Export
service (which uses portable storage devices to enable movement of large amounts of data
into and out of AWS cloud environment). Newer offerings from Amazon include petabyte
to exabyte scale data transport services, such as AWS Snowball, AWS Snowball Edge, and
AWS Snowmobile.

Amazon database-related services
There are several database-related services offered, including SQL and NoSQL databases,
caching services, and a data warehouse service. In addition, an AWS database migration
service is also available that can help migrate databases to AWS cloud with minimal
downtime. Some of these services are described in the following sections.

Introducing AWS Components Chapter 3

[71]

Amazon Relational Database Service (RDS)
Amazon Relational Database Service (RDS) provides an easy way to set up, operate, and
scale a relational database in the cloud. Database options available from AWS include
MySQL, Oracle, SQL Server, PostgreSQL, and Amazon Aurora. With RDS, you can launch a
DB instance and get access to a full-featured MySQL database and not worry about
managing or administering it. Amazon RDS can significantly reduce effort on common
database administration tasks, such as backups and patch management.

Launching a database requires you to select a database engine, license type, an instance
class, and storage capacity. The RDS instances are preconfigured for the DB instance you
choose. It is equally easy to monitor and scale your database instance (for both compute and
storage capacities).

For production-grade availability, you can choose the Multi-AZ deployment option. In
Multi-AZ deployments Amazon RDS automatically creates a primary DB instance and then
synchronously replicates the data to another instance located in a different availability zone.
In this setup, the RDS can automatically failover to the standby instance. For consistent
IOPS, you can choose SSD storage and provision IOPS as per your requirements.

Amazon DynamoDB
Amazon DynamoDB is a NoSQL database service offered by AWS. It supports both
document and key-value pairs data models and has a flexible schema. Integration with
other AWS services, such as Amazon Elastic MapReduce (Amazon EMR) and Redshift,
provide support for big data and BI applications, respectively. In addition, the integration
with AWS Data Pipeline provides an efficient means of moving data into and out of
DynamoDB.

To handle high data volumes, DynamoDB uses automatic partitioning. SSDs are used to
provide high-throughput and low latencies at scale. The scaling can be implemented in a
manner that matches the growth in the number of application requests. This service
automatically replicates your data across three facilities within an Amazon region. Amazon
DynamoDB is a fully managed service, which means that you don't have to sign-up for the
full scope of database administration tasks.

Amazon Redshift
Amazon Redshift is a highly scalable data warehouse service offered by AWS. You can
leverage your existing investments in BI tools because Redshift can work with them.

Introducing AWS Components Chapter 3

[72]

Amazon ElastiCache
If your application is read-intensive, then you can use AWS ElastiCache service to
significantly boost the performance of your applications. ElastiCache supports Memcached
and Redis in-memory caching solutions. AWS ElastiCache supports higher reliability
through automatic detection and replacement of failed nodes and automatic patch
management and enables monitoring through integration with Amazon CloudWatch.
ElastiCache can be scaled-up/scaled-down in response to your application load.

Amazon messaging-related services
Cloud-based messaging services supports messaging to both external and internal users or
systems. These services are key to ensuring scalable solution architectures, supporting
monitoring-related alerts and messages, and implementing customer interaction and
engagement business applications. We will introduce these services in the following
sections.

Amazon SQS
Amazon Simple Queue Service (Amazon SQS) is a reliable, highly scalable, hosted
distributed queue to store messages as they travel between computers and application
components.

Amazon SNS
Amazon Simple Notification Service (SNS) provides a simple way to notify applications
or people from an AWS cloud application. It uses the publish-subscribe protocol.

Amazon SES
Amazon Simple Email Service (SES) is a cloud-based email sending and receiving
service. You can use Amazon's SMTP interface or integrate SES directly into your
applications using AWS SDKs.

Introducing AWS Components Chapter 3

[73]

Amazon Pinpoint
Amazon Pinpoint can be used to collect information on your customers' devices and track
usage information of your applications. It requires AWS mobile SDK to be integrated into
your applications. This service is typically used to develop contextual customer engagement
and interaction applications that trigger some action based on customer's behavior/usage.

Amazon networking and content delivery
services
AWS networking and content delivery services enable isolation of your cloud infrastructure
and help in scaling capacity and connecting your networks. These services are introduced in
the following sections.

Amazon VPC (Virtual Private Cloud)
You can define a virtual network using Amazon Virtual Private Cloud (Amazon VPC). You
can select IP address ranges, create subnets, and configure route tables and network
gateways. For example, for a three-tier web application, you can create a public subnet for
the web servers and a private subnet for the application and database servers. Amazon VPC
allows you to extend your corporate network into a private cloud contained within AWS.
The IPSec tunnel mode enables you to create a secure connection between a gateway in
your data center and a gateway in AWS cloud.

Amazon Elastic Load Balancing
Elastic Load Balancing automatically distributes incoming application traffic across
Amazon EC2 instances, containers, and IP addresses within and across a Availability Zones.
Elastic Load Balancing offers three types of load balancers:

 Application Load Balancer (for HTTP/S traffic)
Network Load Balancer (for TCP traffic)
Classic Load Balancer (for applications built within EC2-Classic VPC).

Introducing AWS Components Chapter 3

[74]

Amazon Route 53
Amazon Route 53 is a highly scalable DNS service that allows you to manage your DNS
records by creating a Hosted Zone for every domain you would like to manage.

Amazon CloudFront
The Amazon CloudFront service is a web CDN service for low-latency content delivery
(static or streaming content). For example, copies of S3 objects can be distributed and
cached at multiple edge locations around the world by creating a distribution network
using Amazon CloudFront service.

AWS Direct Connect
AWS Direct Connect helps you to establish private connectivity between your data center,
or office network, to the AWS cloud. This service can help you achieve higher bandwidth
and consistent network performance.

Amazon management tools
Amazon management tools are used for provisioning, configuration management,
monitoring, and enforcing security and compliance policies. We will introduce some of
these services in the following sections.

AWS CloudFormation
The AWS CloudFormation service helps in creating and managing a collection of related
AWS resources. We can create templates to describe the AWS resources and any associated
dependencies or runtime parameters required to run your application. In addition
to provisioning AWS resources, CloudFormation can also be used to update them in an
orderly and predictable manner.

Amazon CloudWatch
CloudWatch is a monitoring service for your AWS resources. It enables you to retrieve
monitoring data, set alarms, troubleshoot problems, and take actions based on the issues in
your cloud environment.

Introducing AWS Components Chapter 3

[75]

AWS CloudTrail
AWS CloudTrail service helps with governance, compliance, operational auditing, and risk
auditing of your AWS account. You can log and monitor account activity related to actions
across your AWS infrastructure. CloudTrail provides a history of your AWS account
activity, including actions taken through the AWS Management Console, AWS SDKs,
command line tools, and other AWS services.

There are several other AWS management tools that can help you in the provisioning,
configuration management, monitoring and performance, governance and compliance, and
resource optimization of your cloud resources and environment.

For more details on AWS management tools, refer to https:/ /aws.
amazon. com/ .

Amazon security, identity, and compliance
services
Given the concerns enterprises have regarding the security of their data, Amazon has
focused a lot on ensuring security of it's customers' data in the cloud. Aside from providing
physical security and obtaining various industry-recognized security certifications, AWS
offers a whole host of security and compliance services. We will introduce some of these in
the following sections.

AWS Identity and Access Management (IAM)
AWS Identity and Access Management (IAM) enables you to control access to AWS
services and resources. You can create users and groups with unique security credentials
and manage permissions for each of these users. You can also define IAM roles so that your
application can securely make API calls without creating and distributing your AWS
credentials. IAM is natively integrated into AWS Services.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Introducing AWS Components Chapter 3

[76]

AWS Directory Service
AWS Directory Service enables you to use your corporate credentials to access AWS
resources. You can use your existing directory service or set up a directory on the cloud for
this purpose.

Amazon Certificate Manager
AWS Certificate Manager is a service that lets you easily provision, manage, and deploy
Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates for use with AWS
services. In addition, AWS Certificate Manager handles certificate renewals sparing you the
headache of keeping track of them.

AWS Key Management Service
AWS Key Management Service (KMS) is a managed service that makes it easy for you to
create and control the encryption keys used to encrypt your data. It is also integrated with
AWS CloudTrail to provide you with logs of all key usage to help meet your regulatory and
compliance needs. Also, it can help you implement key rotation policies with reasonable
ease.

AWS WAF
AWS WAF is a web application firewall that helps protect your web applications from
incidents that could affect application availability, compromise security, or consume
excessive resources. AWS WAF gives you control over which traffic to allow or block to
your web applications by defining appropriate rules.

Other security and compliance products from Amazon include AWS Artifact (for
compliance reporting), AWS CloudHSM (for key storage and management), Amazon
Inspector (for automatic security assessments), AWS Organizations (for policy-based
management of multiple AWS accounts), and AWS Shield (for DDoS protection).

Amazon analytics-related services
AWS provides a set of services that can help implement highly scalable analytics
applications quickly. These services include data streaming services, data pipelines, big data
frameworks, and data preparation and loading tools. Some of these services are introduced
in the following sections.

Introducing AWS Components Chapter 3

[77]

Amazon EMR
Amazon Elastic MapReduce (EMR) provides a hosted Hadoop framework running on
Amazon EC2 and Amazon S3 that allows you to create customized MapReduce jobs.

Amazon Kinesis
The Amazon Kinesis service is designed for real-time streaming data ingestion and
processing. Typical use cases for Amazon Kinesis include IoT applications.

Other Amazon Analytics-related services include Amazon Athena (a serverless query
service for running SQL queries on S3 data), Amazon Elasticsearch service, Amazon
QuickSight (BI tool for business analytics), AWS Glue (for ETL operations), and AWS Data
Pipeline (for data workflow orchestration).

Amazon machine learning/AI-related services
New services in the areas of machine learning, deep learning, and AI are rapidly being
made available by Amazon to support the latest industry trends in enterprise
applications. These services include frameworks (Apache MXNet, TensorFlow, Caffe,
Theano, Torch, Keras, and others), API-driven services (Amazon Lex, Amazon Polly, and
Amazon Rekognition) to incorporate intelligence in your applications, and machine
learning platforms (Apache Spark, visualization tools, and wizards for integrating various
ML algorithms). Also, Amazon provides deep learning AMIs (with GPUs) for supporting
deep learning applications development.

Some of these emerging services are introduced in the following sections.

Amazon Machine Learning
Amazon Machine Learning provides developers with visualization tools and wizards to
help create ML models without having to learn complex ML algorithms or manage the
underlying infrastructure. It allows you to start small and then scale, as your application
grows. Typically, after the modeling phase is completed, Amazon Machine Learning makes
it easier to obtain the results using simple APIs. These APIs assist in serving these results in
real time. You can also use Amazon Batch for processing predictions based on large batches
of data.

Introducing AWS Components Chapter 3

[78]

Apache Spark is an open source, distributed processing system that is increasingly
becoming the platform of choice for many emerging applications, including streaming
analytics, machine learning, and graph applications. You can quickly create managed
Apache Spark clusters and use auto scaling to increase or decrease the size of your clusters.

Other Amazon AI-related services
Amazon Lex provides features such as automatic speech recognition (ASR) and natural
language understanding (NLU) to help build applications such as chatbots. Amazon Polly
is a service that turns text into lifelike speech that enables you to build speech-enabled
products. Amazon Rekognition is a service that allows you to add image analysis
functionality in your applications.

AWS services supports frameworks, such as TensorFlow and MXNet. Several organizations
have started running their production applications with TensorFlow and Apache MXNet on
AWS, and this trend is likely to continue to become a lot more popular.

Finally, from an infrastructure's perspective, Amazon EC2 P2 instances provide powerful
Nvidia GPUs to significantly reduce the training time of your models. You can also use the
Deep Learning CloudFormation templates to create P2 clusters using Amazon Deep
Learning AMIs for your large-scale model training requirements.

Other Amazon services
AWS provides many other services for development, deployment, cloud migration, and
management of your applications. Detailed documentation for these services is available on
the AWS website.

For more details on AWS products and services, refer to https:/ /aws.
amazon. com/ .

Aside from all the services provided by Amazon, there are many software products and
services offered by third-party vendors through the Amazon Marketplace. Depending on
your application requirements, you can choose to integrate these services into your
applications instead of building them yourself.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Introducing AWS Components Chapter 3

[79]

Managing costs on AWS cloud
It is important to understand the AWS costing model and parameters so that you are able to
track and manage your expenses better. However, there are many different options
available and trade-offs involved in terms of infrastructure, services, and their associated
costs. Hence, it is key to understand the business requirements and set costs-related
objectives to guide your decision-making.

Setting costs-related objectives
There can be different perspectives on objectives depending on who you talk to in an
organization. These perspectives are not necessarily conflicting with each other, but it is
important to understand them well to approach your decision-making whether from a
business, architecture, or operation's perspective. For example, the business perspective
could be to pay as little as possible for whatever is used. Architectural goals may direct you
toward avoiding waste as much as possible while achieving a more scalable and robust
architecture for your applications. Similarly, operational goals may want you to focus on
reducing the number of custom-developed components to be managed while using AWS
services where possible to the maximum extent possible, thereby, minimizing the time and
effort spent toward managing and maintaining the infrastructure and enabling more time to
be spent on the business of the organization and/or to innovate.

Optimizing costs on the cloud
There are broadly three areas for cost optimizations on the cloud: operational,
infrastructural, and architectural optimizations. It is important to note that costs should not
focus on infrastructure alone. You should include code changes in your deliberations
because sometimes, it makes sense to focus on improving the code rather than
infrastructure alone. There are many architectural decisions and trade-offs to be made to
achieve the best results from a cost saving's perspective. The good part is that on cloud, you
can test these decisions and trade-offs immediately to decide, if your decisions make sense.

Costs are a big motivation to use cloud infrastructure, and AWS provides many different
ways of saving on your AWS bills. However, it is up to you to take advantage of all the
saving opportunities available. As a simple guideline start with minimal infrastructure and
iterate from there to optimize your infrastructure costs.

Introducing AWS Components Chapter 3

[80]

Aside from architecting for scale, availability, security, and functionality—in the cloud you
also need to architect for economy or costs. Cloud enables making infrastructural and AWS
service usage changes more easily toward achieving lower transactional and/or operational
costs. Most often pursuing these cost-cutting measures can lead to a leaner, more robust
architecture.

The infrastructure setup process in the pre-cloud era consisted of plan-build-run steps
where mistakes were often expensive and hard to correct. With the advent of cloud
computing, this process has become cyclical where we iterate quickly through architect-
build-monitor steps. Cloud infrastructure is dynamically allocated and de-allocated, so we
do not have to be 100% right, in all our infrastructure design decisions, the first time. We
can iteratively improve our architecture while meeting our infrastructure cost objectives.

The typical stages you would go through to manage your costs per transaction starts with
calculating the costs by hand (using the Cost Explorer). In the next stage, you instrument
your application to collect the data with respect to your transaction volumes and calculate
the transactional costs from the corresponding billing data, periodically. Finally, you would
do real-time transaction volumes monitoring and corresponding costs to drive further
optimizations.

Typically, a substantial part of your bill comprises costs of EC2 compute instances, database
instances (especially, if you are using Provisioned IOPS), and the usage of any specialized
application services (Amazon EMR, Amazon Redshift, and so on). However, storage costs
can also be significant for big data and machine learning applications that operate on vast
amounts data. There are several strategies that can result in substantial savings, and most of
these are relatively easy to implement.

In this section, we will focus on several strategies that will help you cut your cloud bills. We
will expose areas of opportunity where significant savings can be achieved over the next
few sections. These savings can vary anywhere from 30 to 80% of your current costs. These
optimizations also include some quick wins that can be achieved with no changes to your
application code.

Introducing AWS Components Chapter 3

[81]

Strategies to lower AWS costs
On the cloud, we are in a different world now where it is a lot easier to evolve architectures
as you go along. Typically, running lean architectures are not only easy to evolve and
operate but also helps you optimize your costs. We will explore some techniques and best
practices to lower your AWS bills in the following sections. Interestingly, note that a simple
do-nothing strategy would have also led to savings because over a period of time, Amazon
has been able to leverage economies of scale and pass on additional savings to their
customers. In fact, they have reduced prices over 60 times since 2006, and their prices
continue to be revised downwards for various services on an on-going basis.

Monitoring and analyzing costs
AWS platform provides a set of tools to help monitor and analyze your costs. These include
the AWS TCO Calculator, the simple monthly calculator (described in Chapter 2, Designing
Cloud Applications – An Architect’s Perspective), AWS billing console, which shows you an
itemized bill, and AWS Cost Explorer, which gives you costs trends information across
different time periods.

EC2, S3, CloudFront, and so on offer volume pricing tiers at lower price points based on
usage. If the payer account combines usage from all the subaccounts, then you can get these
discounts automatically using consolidated billing (with no additional effort involved).

The TCO calculator can be used to compare on-premise versus on-cloud costs. The AWS
simple monthly calculator is a useful tool to select the various AWS services and options to
compute your costs. AWS Trusted Advisor provides an automated way to save money. The
tool comes free with business and enterprise support subscriptions. It scans your AWS
infrastructure and identifies targets for further savings by generating a cost optimization
report. It will tell you about idle instances that you may want to shut down and also the
amounts you will be able to save by switching to reserved instances.

You can use the AWS billing console to drill down deeper into the AWS bill to see an
itemized list of components and their costs. This can help us identify optimization
targets. You can also set AWS billing alerts, which send you automatic notifications when
your bill hits some preset threshold. These thresholds can also be used for auto scaling
where you can shut down instances, automatically, if your bill reaches a certain level. You
can also enable detailed billing to break down costs by hour, day, or month; or by each
account. AWS will publish these reports as CSV files and store them to a S3 bucket.

Introducing AWS Components Chapter 3

[82]

There are several third-party open source (for example, Netflix ICE) and commercial tools
(for example, Cloudability). These tools provide cost and usage reporting, information
related to accounts, and comparison across time periods and underutilized instances.

Choosing the right EC2 Instance
The EC2 instances you choose are directly dependent on your application characteristics.
Ensure that you have a good understanding of these characteristics, for example, is the
application CPU-intensive, or is it more IO bound? What are the typical workloads? Is there
variability in demand over a period of time? Are there any special events when the demand
is unusually high? What are the average resource requirements for good user experience?

Based on the application characteristics shortlist a few instance types available from AWS.
EC2 types include several families of related instances available in sizes ranging from micro
to extra large. These classes include general purpose, compute-optimized, memory-
optimized, storage-optimized, and accelerated computing instances.

You should then do a few tests to analyze the performance of the shortlisted instances
against increasing loads. It is a good idea to understand the upper limit of these instances in
terms of number of concurrent users or throughput they can support.

For example, let's assume you want to select EC2 instances for your web servers. These web
servers proxy API calls to the application servers, that is, handle CPU-intensive traffic and
support heavy payloads. Based on these requirements, let's say that you shortlist two
instance types – one a CPU-optimized (say, c3.xlarge) and a general purpose (m3.xlarge)
instance type. Typically, you should choose a general purpose and a special purpose
instance types for comparison purposes. In order to conduct the performance analysis,
create a set of test cases to simulate the expected scenarios in your application. Monitor the
CPU utilization for these instances at different loads (say 1,000, 2,000, and 3,000 users).
Increase the load to a point where you max out on the CPU. It is very likely that you will hit
max CPU utilization at different loads for each of the chosen instances.

For the latest details on instance types, use cases and pricing, refer
to https:/ / aws. amazon. com/ ec2/ instance- types/ .

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Introducing AWS Components Chapter 3

[83]

In cases where you want to test at very high loads, you should contact Amazon before
conducting the load test to have your load balancer "pre-warmed". They can configure the
load balancer to have the appropriate level of capacity based on the expected traffic during
your load tests. It is also important to load test from multiple distributed agents to ensure
your IP address is not flagged. At this stage, you should provision multiple smaller
instances (from the same families) that match the xlarge instance’s compute power and
conduct the same load tests. This is done to check whether we can achieve the same
performance, at a higher level of resiliency, using multiple smaller instances in place of a
bigger instance.

Instance selection is not only about the instance size or type alone but also about the
available network bandwidth. Hence, you should also compare the results of your network
bandwidth assessment for each of your instance types. If your application requires
increased network bandwidth turn on the enhanced networking option, which is available
on certain instance types, for example, enhanced networking option is available on
compute-optimized C3, C4, D2, I2, and R3 instances, but not on general purpose instances.

For more details on options for enhanced networking, refer to http:/ /
docs. aws. amazon. com/ AWSEC2/ latest/ UserGuide/ enhanced- networking.
html.

Compare the costs against different throughput levels. It is possible that the general
purpose instance type costs more than the compute optimized instance type for your
application’s expected workload.

Availability and costs of instance types differ by region. Hence, your EC2 instance type and
size decision will need to take into consideration the availability of instance types and then
strike the right balance in terms of performance, resiliency, and costs.

Typically, in start-ups, the development and test environments are provisioned in the most
economical region using minimum sizes of general purpose EC2 instances to minimize
development infrastructure costs.

Finally, revisit and rightsize your EC2 instances choices every 3 to 6 months as instance
families and workloads can change. New instance types that are more appropriate for your
workloads can reduce your overall costs. You can use the Amazon Trusted Advisor for cost
optimization hints for low network/CPU utilization, unused or low utilization instances,
and so on. For example, if you observe a 15-20% CPU maximum utilization on an instance,
then it is a trivial change to lower instance. If this step leads to an improvement in CPU
utilization to 60-70%, then you would saved on costs with sufficient headroom for growth
and/or auto scaling.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html

Introducing AWS Components Chapter 3

[84]

Choosing the right distribution of instances across AZs can also make a significant
difference to your overall costs while meeting your availability requirements. For example,
if 12 instances are required in order to maintain HA, then instead of splitting 24 instances
across two AZs, we split them across three AZs containing 6 instances each so that the
required 12 are available even when an AZ is down. This might sound a little obvious but
make yourself well aware of various facilities offered by AWS to drive additional savings.

Turn-off unused instances
Typically, there is an inordinate amount of focus on production spends but a lot of that
spend (in some cases, more than production) is on dev and test. It is surprising how many
times you find unused instances adding to your bills. This usually happens when someone
provisions an instance to conduct an experiment or check out a new feature and then fails to
delete the instance, when done. It also happens a lot during testing when the test
environment is, carelessly, left running through the weekend, or after the testing activity
has been completed. It is important to check your bills and usage data to minimize such
costs. Tag your instances with environment name, owner’s name, and so on to identify the
instances and the primary owner or cost center quickly.

Instances are disposable on the cloud, and they can be switched on and off, easily, so ensure
that you switch off your dev, test, and training instances after office hours and through the
holidays and weekends. There are several ways to achieve this including scripts, starting up
based on time or on request, scheduled auto scaling groups, and so on. On cloud, instances
are billed for usage; hence, you do not need to keep them on when they are not being used.
You can easily save 30-40% or higher on your bills this way.

Furthermore, you can leverage AWS Lambda to get rid of idle time on servers. AWS
Lambda comes with automatic provisioning and scaling, and there is no need to manage
any infrastructure. Typically, if your server utilization is less than 40%, then consider using
AWS Lambda instead.

Using Auto Scaling
Auto Scaling scale your compute instances to the extent required otherwise scale down,
automatically. Auto Scaling aligns your deployed infrastructure to the demand at any given
point in time. You can define launch configurations for your EC2 instances and then set up
appropriate auto scaling groups for them. This helps automate the process of saving money
by turning off unused instances during scale down. You can set parameters, such as the
minimum and maximum number of instances, to meet your functional and nonfunctional
requirements while controlling your overall costs.

Introducing AWS Components Chapter 3

[85]

It can take a few minutes for your new instances to come online during a scale-up. So, make
sure that you account for this lag while establishing your thresholds. Do not set the
threshold too high in production (for example, at 90% CPU utilization) because there is a
high likelihood that your existing instances will hit 100% utilization before the new
instances have spun up. It is a good practice to set the production CPU utilization
thresholds to be between 60-70% to give you sufficient headroom. At the same time, in
order to guard against inadvertent scale up, due to a random spike, you should also specify
a duration of say 2 or 5 minutes at the threshold CPU utilization before the scale-up process
kicks in. As EC2 instances are charged by the hour, do not rush to scale down immediately
after you have scaled up (against an immediate dip in utilization below the threshold). You
can set a longer duration say 10-20 minutes at the reduced CPU utilization threshold before
scaling down.

You can also set thresholds for network and memory utilization based on profiling your
application or working with an initial best guess and iteratively adjusting it to arrive at the
right threshold values. However, avoid setting multiple scaling triggers per auto scaling
group because this increases the chance of conflict in your triggers. This could lead to a
situation where you are scaling up based on one trigger while scaling down due to another.
You should also specify a cooling down period upon a scale down.

If you have implemented a multi-AZ architecture, then scale up and scale down should be
in increments of two instances at a time. This helps keep your AZs balanced with equal
numbers of instances in each.

Sometimes, massive scaling is required in response to certain planned or scheduled events.
Special events such as a big sales event or flash sales events on popular e-commerce sites, or
during sporting events and elections reporting on news sites can lead to disruptions due to
the huge spikes in resource usage and demand during these events. In such cases, it may be
a better approach to over-provision instances for the sharp increase in traffic rather than
relying on auto scaling alone. After the event is over, the instances can be scaled down,
appropriately.

You can do schedule-based scaling where you can match scaling with the workload at
different times during the day and/or weekends. This approach can also be used to scale
down development and test environments during off-peak hours.

Introducing AWS Components Chapter 3

[86]

After you have architected your application environment, the next step is to monitor it.
Monitoring is important because it helps you validate your architectural decisions. If your
focus is both costs and usage, then you need to monitor them closely, as they are both
necessary to identify targets for further optimizations. Tag your instances with identifying
information with respect to the environment, owner, cost center, and so on for reporting
purposes. You also need to establish various monitoring thresholds and alerts. Analyze this
information frequently to iterate on your architecture for further savings.

Using reserved instances
Reserved instances can help save 70% or higher on your instance costs (versus using on-
demand instances). You have the flexibility to pay all, part or nothing as upfront fee, and
they are available for 1 year or 3 years' duration at much lower hourly rates. You can also
modify or sell your reserved instances, if your requirements change, subsequently. Typical
breakeven on these instances vary between 5 months and 7 months depending on the
duration of the contract.

Typically, you would run your systems for 3 to 4 months to understand your workloads,
and tune and optimize your instances types, OS, tenancy, and so on before switching to
Reserved Instances. As soon as you know your instance type and size, try to swap your on-
demand instances with reserved instance.

Reserved instances are flexible, for example, they can be moved between AZs, and their
sizes can be modified. In fact, you don’t have to choose exactly where you want to run your
reserved instances—this essentially decouples capacity reservation from cost optimization.
You can also have convertible reserved instances (available for 3 years only) that allow you
to change instance families/type to leverage the latest offerings from AWS. The effective
rate of 3-year convertible reserved instances is better than 1-year standard reserved
instances. So, even if you run them for a year and a half to two years, it is fine.

As production instances are typically required to run 24x7x365 in a reliable manner,
Reserved Instances are a good fit for enterprise applications (in production). For dev/test
environments (and in startups), you might want to experiment with and spend more time
evaluating spot instances because spot prices can be a fraction of the regular on-demand
prices.

Introducing AWS Components Chapter 3

[87]

Using spot instances
Instances used for experimentation, learning, and in highly price-sensitive situations, using
spot instances can be the most cost-effective option. These instances offer incredible value
for the right workloads and are commonly used for dev/test, and embarrassingly parallel
workloads. AWS carries extra capacity in terms of unused instances, and they sell these
instances on a spot market. The pricing is dynamic and based on supply/demand. If
you check the price history of spot instances, you will note that they do not vary too much.
Hence, you can balance price and availability with the right combination of On-Demand,
Reserved, and Spot instances.

You can set the maximum price you want to pay for an instance, and that price can be much
lower than the regular on-demand price (the price difference can sometimes be as high as
90%). If capacity is available, then Amazon will fulfill that request. However, your instance
is terminated (with 2 minutes notice), if the spot price is higher than your price. If your
application is architected against failures, then such terminations should not impact the
running of your application.

Availability and costs can vary between different AZs. When the demand goes up, the price
can go even higher than on-demand instances. To guard against this situation, you need to
set your price carefully and start your instances in another AZ, if the price in your current
AZ goes higher than your set price. For example, you can set your spot price to be greater
than the market rate and less than the on-demand prices to always get the market rate, at or
under your bid price.

Spot instances give you an opportunity to name your own price, and they can potentially
save you 80-90% on your instance costs. But understand and plan for the risks associated
with using them. You can leverage auto scaling to reduce your overall risks. For example,
you can create two auto scaling groups: one with on-demand instances and the other with
Spot instances. As Spot instances are not always guaranteed, you can set a CloudWatch
alarm on the number of Spot instances in the group and auto scale the on-demand group, if
the number of spot instances is below the threshold you set. The spot instances fleet saves
you a lot of money automatically; while the fleet of on-demand instances scales up to
compensate for any terminated spot instances. This way, you can have the best of both
worlds—lower costs while maintaining a HA architecture. You can use 2 minutes available
during the termination of spot instances for running scripts to write out any data, log files,
and so on.

Spot instances are a great choice for stateless web/app server fleets, Amazon EMR,
continuous integration, high-performance computing (HPC), grid computing, media
rendering/transcoding, and so on use cases. You can also run batch jobs using AWS batch
service that leverages spot instances.

Introducing AWS Components Chapter 3

[88]

The Spot Bid Advisor can tell you—how likely it is that you will lose your instances against
other bids (for a given instance type and number of instances). If the likelihood is low over
the past 1 month, then you are likely to keep your instances.

So far, we have primarily focused on cost savings related to EC2 instances. However,
Amazon S3 offers additional opportunities to cut storage costs.

Using Amazon S3 storage
Amazon S3 offers a range of storage classes designed for different use cases. The Amazon
S3 storage classes are listed here:

Amazon S3 Standard: For general purpose storage of frequently accessed data
Amazon S3 Standard - Infrequent Access: For long-lived, but less frequently
accessed data
Amazon Glacier: For long-term archive

Taking advantage of Amazon S3 - Infrequent Access (IA) instead of Standard S3 can lead to
immediate storage costs savings up to 30% with no code changes. You will need to
understand your storage usage patterns and then configure policies to automatically move
all or substantial portion of your data to the lower cost storage class, appropriately.

You can use S3 "Static" Website Hosting to even eliminate your web server tier. Static in
quotes because it is not exactly static in nature – you can do a bunch of active stuff as it does
support JavaScript (includes AWS SDK) and Cross-Origin Resource Sharing (CORS). The
advantages include no servers, no patching, and no scaling rules required. Given that web
page sizes are increasing, this approach can avoid costs associated with web server
patching, capacity planning, and security scanning, while making content rollouts/updates
easier (less testing required).

Amazon Glacier storage class can be used to store backups and archive old data. Amazon
Glacier is low-cost storage with 99.999999999% data durability. Data restores from Glacier
storage can take anywhere from a few minutes to a few hours. However, this can result in
50 to 60% savings on storage. You can also specify life cycle rules to automate data
movement from S3 to Glacier storage.

Introducing AWS Components Chapter 3

[89]

Using the Reduced Redundancy Storage (RRS) option in Amazon S3 storage can reduce
your costs by storing noncritical and easily restorable data at lower levels of redundancy
than the standard storage option. Amazon S3’s reduced redundancy option stores data in
multiple facilities and on multiple devices, but the data is replicated fewer times. RRS
provides 99.99% data durability versus 99.999999999% using the standard option. This can
lead to savings of additional 15 to 20% on storage.

Databases (particularly RDBMSs) make poor BLOB stores and are a poor choice in terms of
performance, management, and costs especially Multi-AZ settings. Store blobs on S3 with
reference URLs in DB.

Optimizing database utilization and costs
Caching and Read Replicas can reduce the capacity required for your database instance in
read-intensive transactions/applications. For example, for read-intensive workloads in
particular, using caching instead of PIOPs on a DB server can cut down your expenses,
substantially (sometimes up to 80-90%). For caching the data, you can leverage the spare
local RAM caches available in your application server instances or use Amazon ElastiCache
(there is a cost involved but that may be lower than additional capacity allocation for your
database instance for your application type).

The most common and the simplest optimization for databases is to cache as much data as
you can because caching saves money. For example, if you are using DynamoDB, then as
DynamoDB is charged by provisioned throughput, you can scale that down significantly
using ElastiCache (which not only makes for faster responses but is also cheaper because it
is charged per hour). In addition, use negative caching, if you are executing the same
queries repeatedly that do not return results every time the query is executed. If there is no
result returned for a specific query from the database, then save that information in the
cache too. This way, you can achieve 80-95% cache hit ratio for queries that return no result
most of the time.

You can also use Amazon SQS to buffer writes that exceed your provisioned capacity for
the database instance. This approach allows you to provision for average capacity rather
than the peak.

You can use dynamic DynamoDB, an open source tool (Python script) that automatically
resizes read and write capacity by consuming CloudWatch metrics to decide the best
capacity to be booked. It achieves a kind of auto scaling for DynamoDB. In addition, you
will typically have hot spot tables in your databases—look to put these in NoSQL or cache
storage. Replace hot spots in RDS with DynamoDB because in large TB-scale databases with
Multi-AZ configurations, this can yield even more savings – 30 to 40%.

Introducing AWS Components Chapter 3

[90]

Try offloading your traffic for popular content to Amazon S3 and/or Amazon CloudFront
(they are like proxy caches) to scale down your backend DB infrastructure.

Using AWS services
AWS makes available a bunch of ready-to-use services that you can integrate into your
application. Leveraging existing services can help reduce the infrastructure, you need to
maintain, scale, and pay for, while getting the benefits of scalability and high-availability
out of the box. In most cases, this will result in a leaner and more efficient architecture. For
example, use Amazon RDS, DynamoDB, ElastiCache for Redis or Amazon Redshift instead
of running your own databases. Similarly, use Amazon Elasticsearch service instead of
setting up your own Elasticsearch cluster. This strategy makes a lot of sense as AWS has
experts for each service who have loads of experience running these services at scale on the
cloud.

There are additional operational costs associated with system and database administration
tasks. For example, there are costs associated with DB upgrades, including taking backups,
creating rollback plans, running applications in a staging environment, migrating to the
production environment, and testing, verifying, and releasing the application, and so on. A
switch to RDS significantly lowers the time, effort, and costs of such upgrades. Also, doing
a more granular scale out of a table in DynamoDB instead of the whole MongoDB cluster
that allows you to scale for what you need to scale and not the whole cluster underneath,
thereby saving you time and money.

A good side effect of pushing things to AWS services is that it helps you pick the right
service for the job. In most modern applications, there isn't one database solution that meets
all the different and specialized requirements of your application. For example, choosing
the data storage for your application can involve several different decisions based on your
specific requirements. You can select DynamoDB as the Key/Value store for scalable
throughput and low latency storage requirements. Amazon Aurora for more complex
relational data and queries. Amazon Redshift for big (complex) data with higher latency
and ElastiCache for Redis as a in-memory store with very low latency.

If your applications are too small for using auto scaling, you leverage Amazon EC2
Container Service to save on those very small applications. You can consolidate your
processing needs with Amazon ECS. ECS is designed to be used with other AWS services; it
is extensible and secure; and it provides performance at scale.

Introducing AWS Components Chapter 3

[91]

Using queues
SQS gives you tremendous power to decouple your architecture. However, resilience is
only one part of the story. You can use queues to manage transaction costs. For example, in
an application that uses the freemium business model, SQS can trigger auto scaling groups
based on your customer types, free or paying. In order to pay customers, you can scale the
fleet when there are more than a certain number of requests in the queue or the age of the
requests exceed a certain threshold (based on SLAs).

Instead of using queues, you can simplify your architecture further using AWS Lambda
service based on S3 event triggers. You can use two buckets—one for incoming input that
uses an S3 event to trigger Lambda function for processing and then store the output to
another bucket. The main advantages of using Lambda in this scenario include elimination
of your response time-based SLAs and getting to enjoy the cost benefits of the free tier
available for it, forever. In addition, you can optimize your costs further by using spot
instances for your free customers while the Lambda service is used to process requests from
your paying customers.

In the next section, we briefly discuss the various environments you should provision for
effective cloud-based application development.

Application development environments
You will need to provision several environments in the course of your application
development. These environments should be provisioned only when they are actually
required. This section discusses these environments and their features.

Development environment
The primary purpose of the development environment is to support development and unit
testing activities. This environment is usually provisioned with the smallest instances to
support your developers. In addition, you can use a shared database instance with schema
space for each of your developers. Depending on the standards within your organization,
you can do daily, weekly, or on-demand deployments in this environment. You may or
may not provision for HA or configure auto scaling in your development environment.
Typically, the development instances are shut down at the end of each day and through the
holidays and weekends. However, during crunch periods and to support development
teams across different time zones, these environments are kept running for extended hours.

Introducing AWS Components Chapter 3

[92]

QA/test environment
This environment is typically provisioned to support functional and nonfunctional testing
activities. They use smaller instances, and they are not configured for HA and auto scaling
(during functional testing). This environment can be configured for auto scaling and HA
(only when required) for nonfunctional testing. Like the development environment, this
environment is shut down on a daily basis and during holidays and weekends. Application
deployments in this environment are as per the planned project schedule (to match testing
cycles).

Staging environment
Staging environment should mirror the production environment in terms of configuration.
This environment is typically used for User Acceptance Testing (UAT), recreating
production issues, testing application patches, and load testing. As this environment
mirrors production, it is expensive to keep it running continuously. Hence, it should be
spun up only when necessary to support the aforementioned activities. Application
deployments occur only when required, for instance, to test the application before a
production migrations.

Production environment
Production environments are highly scalable and HA-enabled environments. Auto Scaling
is enabled, backups are maintained according to the organization's backup policy, and the
environment is monitored, continuously. The instances run continuously and a specific
version of the application remains deployed at all times.

Additional environments can be created for the purposes of customer training, demos, and
so on.

In the next section, we take you through the process of setting up the infrastructure for our
sample application.

Setting up the AWS infrastructure
This section introduces you to provision AWS infrastructure in order to deploy and run the
A1Electronics e-commerce application securely on AWS. You will also see the configuration
changes required at the application level when deploying it to the cloud.

Introducing AWS Components Chapter 3

[93]

By the end of this section, you will be familiar with creating EC2 and RDS instances, and the
choices you need to make for configuring them for you own deployments. So, let’s begin.

AWS Cloud deployment architecture
Before we start, we need to have a deployment architecture in place. The term deployment
architecture here describes the manner in which a set of resources such as the web server,
the application server, databases, DNS servers, load balancers, or any other specific AWS
resources are configured on the network to fulfill the system requirements (and ultimately
satisfy your business goals).

Let’s get familiar with the AWS-specific terms:

Region: AWS products and services are hosted in multiple locations worldwide.
The regions are connected through the public internet. The main criteria to
choose a specific AWS region are:

Location of a majority of your customers. This reduces network
latency and makes for responsive web applications. For our
example, since a majority of A1Electronics customers are located in
the US; hence, US West (Oregon) region is selected.
Not all AWS products and services are available across all the
regions. A list of AWS services and products available by region is
available at http:/ / aws.amazon. com/ about- aws/ global-
infrastructure/ regional- product- services.

The products and services offered by Amazon are priced
differently across the regions. For example, we can choose a region
with the lowest price for our development work, but for
production deployment, we can do a cost benefit analysis to choose
the most appropriate region. Pricing of all the AWS products and
services is available at http:/ /aws. amazon. com/products/ .

Availability Zone: An AZ within a region can be treated as a
traditional data center. AZs in the same region are designed to
provide infrastructure redundancy in the event of a catastrophic
outage, such as earthquakes, snowstorms, Godzilla attack and so
on. The number of AZs in a region is region-specific. In our
example, we will select the default AZ.

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/
http://aws.amazon.com/products/

Introducing AWS Components Chapter 3

[94]

EC2 instance: It is a virtual server on which you run your applications. These
come in various flavors to meet your computing demand. A high compute EC2
instance also has higher network bandwidth and memory associated with it. You
cannot have a low compute EC2 instance with high memory and network
bandwidth. EC2 instances have fixed CPU to memory ratios. It is best to select a
micro instance for our development since it is free. More on EC2 instance types is
available at http:/ /aws. amazon. com/ ec2/instance- types/ .
Amazon Relational Database Service (RDS): RDS is a fully managed SQL
database service. It is nothing but an EC2 instance running a SQL engine of your
choice. MySQL, PostgreSQL, Oracle, Microsoft SQL Server plus Amazon's own
MySQL-compatible Amazon Aurora DB engine are supported.
Security groups: A security group acts as a virtual firewall for your instance to
control inbound and outbound traffic. The security group can be configured by a
set of rules for inbound and outbound traffic. The rules define the network
protocol, port, and the source and destination IP address ranges to accept or send
your data to.
Virtual Private Cloud (VPC): Virtual Private Cloud (VPC) lets you provision a
private, isolated section of the AWS cloud where you can launch AWS resources
in a virtual network using custom-defined IP address ranges. It is like your own
private data center. It also provides you with several options on connecting VPC
with other remote networks. For our example, we have chosen a default VPC
172.31.0.0/16 CIDR block, which allows us define total 65536 subnets or total
65534 addressable resources.
AWS resources launched within a VPC aren’t addressable via the global internet,
EC2 instances, or by resources in any other VPC. Resources can be accessed only
by resources running within the same VPC.

Subnet: Subnets are logical segments of a VPC's address range that allow you to
designate to a group of your resources based on security and operational needs.
Router: Each VPC comes with a default router in order to communicate with
resources outside VPC. For example, connecting to a database server in another
VPC.
Internet gateway: Each VPC also comes with a default Internet gateway to
connect to the public internet.

Let’s begin the construction.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Introducing AWS Components Chapter 3

[95]

AWS cloud construction
To create a working AWS cloud infrastructure, you will need to create security groups, key
pairs, users and roles, MySQL RDS instance, EC2 instances, Elastic IP’s and then wire them
together. We will create this environment in a bottom up manner where we first create the
base AWS constructs such as security groups, key pairs, users, and roles and then we wire
them to the EC2 and RDS instances.

Perform the steps in the following sections to set up the infrastructure for our example
application.

Creating security groups
For our requirements, we will create two security groups: one for the EC2 instance and the
other for the RDS MySQL instance.

From the EC2 dashboard, click on the Security Groups link from the navigation1.
pane link and then click on the Create Security Group button:

Introducing AWS Components Chapter 3

[96]

Create a security group for EC2 instances to allow the following:2.
Web traffic from any IP address on port 8080 (default Tomcat server
port)
SSH traffic for remote login from any IP address.
ICMP traffic to ping the EC2 instance from public internet.

Create a security group for MySQL RDS instances to allow access from the3.
internet. In our example, we can configure direct access to the databases from our
development environment. This makes it is easy to make frequent changes and
monitor the database without logging in to the EC2 instance, or setting up
complex SSH tunnels. In addition, there is the added advantage of not having to
install a local MySQL server on your development machine. For your real life
AWS environments, it is recommended to allow database access only from within
VPC.
Select Anywhere from the Source and 0.0.0.0/0 to allow access from any IP4.
address. If you have a static IP address from your ISP, you can enter it here to
allow access to all machines from your static IP address, only. If you have
dynamic IP address, then you will need to update this rule to the most recent.
The figure here displays the list of security groups and the details of the RDS
security group.

Introducing AWS Components Chapter 3

[97]

Creating EC2 instance key pairs
AWS uses public/private keys to securely connect to your instances. The public key will be
retained by AWS, whereas the private key is downloaded to your computer as soon as it is
created.

From EC2 dashboard, click on Key Pairs from the navigation pane and then on the Create
Key Pair button.

You will be prompted with a dialog box asking to enter Key pair name as shown. This key
pair name will be later used while configuring the EC2 instances.

Make sure that you select the correct AWS region from the EC2 dashboard to create the
keys because key pairs can't be shared across regions.

Introducing AWS Components Chapter 3

[98]

As soon as you create the key pair, your private key will be immediately downloaded to
your computer. Secure this private key. This private key file can be only downloaded once
during creation of the keys. You cannot change access keys in your EC2 instances once they
have been assigned.

Creating roles
AWS provides a plethora of services to access these services. You will need a strategy to
distribute and rotate the credentials to your EC2 instances, especially the ones which AWS
creates on your behalf like Spot instances or Auto Scaling groups. A good security practice
is credential scoping - granting access only to the services your application requires. AWS
solves this issue via IAM roles.

From the IAM dashboard, click on Roles in the navigation pane link and then on1.
the Create role button:.

Introducing AWS Components Chapter 3

[99]

Select the EC2 service and then the use case as shown here, and click on the Next:2.
Permissions button:

Introducing AWS Components Chapter 3

[100]

Next, we will assign permissions for the selected role. For now, we do not have3.
any credential scoping. Read and write permissions for all AWS services are
granted to the role. Permissions to the role can be reassigned even when the EC2
instance is running. Select Policy name as AmazonEC2FullAccess for our EC2
instances that have access to all the AWS provided services, and click on the
Next: Review button:

Name the role as ec2Instances and provide a brief description in the Role4.
description field. Click on the Create role button:

Introducing AWS Components Chapter 3

[101]

After the role is created, it should be listed as shown:5.

Creating an EC2 instance
Since we have already done the groundwork in the previous steps. Now, it is just a matter
of creating an EC2 instance. From the EC2 dashboard, click on Instances in the navigation
pane and then on Launch instance. This will start a process of provisioning an EC2
instance.

The next step is to choose an EC2 instance, and this is done by choosing the right1.
Amazon Machine Image (AMI) as per our requirements. Select the Ubuntu
Server 16.04 LTS (HVM) SSD Volume Type AMI:

Introducing AWS Components Chapter 3

[102]

After selecting an AMI image, the next option is to choose an instance type. The2.
instance is the virtual server that will run our application. Select the t2.micro
instance, which is included in the free-tier for a period of 1 year from the date you
created your AWS account. Click on the Next: Configure Instance Details
button:

Next, we configure the EC2 instance. There are several options available at each3.
step, and we need to make the most appropriate choices for our purposes:

Number of instances: This allows launching of multiple AMI1.
instances. By default, it is set to 1 (no need to change that). You can
always launch multiple instances via the EC2 dashboard.

Introducing AWS Components Chapter 3

[103]

Purchasing option: Since we are using the free tier, we can ignore this.2.
The idea of purchasing option relates to excess capacity for an instance
type in an AWS region made available to use at a lower price point.
Network: By default, all EC2 instances are launched in VPC. We use3.
the default VPC.
Subnet: By default, each subnet is associated with an availability zone4.
within a region. Select the No preference (default subnet in any AZ).
Auto assign Public IP: When an EC2 instance starts, it can request a5.
public IP address from Amazon’s pool of public IP addresses (so that it
can be a part of the public internet). This public IP address will be
available as long as the EC2 instance is on. Each time the EC2 instance
starts, it will get a public IP address from the Amazon’s pool of public
IP address. The public IP is not persistent. If we want the public IP
address to be persistent across restarts, then we have to use Elastic IP,
which we will set up in a later step. Set this to Disable for now.
IAM role: Select the role ec2Instances created earlier.6.
Shutdown behavior: An instance can be either stopped or terminated7.
on shutdown. Select Stop.
Enable termination protection: It is a mean to disable the terminate8.
option for the EC2 instance in the EC2 dashboard. Select this option.

Introducing AWS Components Chapter 3

[104]

Monitoring (Enable): This is to enable collection of metrics and9.
analysis via AWS CloudWatch. Logging of basic metrics are free (with
some restrictions). Refer to https:/ /aws. amazon. com/ cloudwatch/
pricing/ for what you get free and what you have to pay for. For our
purposes, you do not need to select this option.
Tenancy: Shared tenancy uses an over-subscription model to rent the10.
hardware among the customers. This makes the performance of the
EC2 instance unpredictable at times. To overcome this problem,
Amazon also provides a dedicated tenancy option, which costs more
but reserves the instance exclusively for your use. Select the Shared
tenancy option from the dropdown.
Advanced Details: This option is used to pass user data or scripts to11.
the EC2 instance. Right now, we do not pass any user data or scripts to
the EC2 instance. So, no changes are needed.
Click on Next: Add Storage to provision persistent storage.12.

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

Introducing AWS Components Chapter 3

[105]

Next, we configure the persistent storage also known as Elastic Block Storage4.
(EBS). EBS does not go away when the system reboots or crashes. It is the hard
disk for your EC2 instance. Up to 30 GB of disk is available in the free tier, which
is sufficient for most applications. Select General Purpose SSD (GP2) from
Volume Type column. The data access speed of the disk is proportional to the
size of the disk. It is defined in terms of IOPS which stands for input output
operations per second. One IOP is defined as a block of 256 KB data written per
second. Click on Next: Add Tags:

Introducing AWS Components Chapter 3

[106]

Next, we tag the EC2 instance. Tags do not have any semantic value and are5.
treated purely as strings in a key-value form. You can work using the tags with
the AWS management console, EC2 API and EC2 command-line interface tools.
Click on Next: Configure Security Group:

Next, we assign the security group sq-EC2WebSecurityGroup we defined earlier6.
in step 1. Click on the Select an existing security group radio button to view all
the available predefined security groups. Select the sq-EC2WebSecurityGroup
from the list. Click on Review and Launch:

Introducing AWS Components Chapter 3

[107]

Next, we can review the options we have selected, and modify them, if required.7.
Click on Launch to launch the instance.
Upon launch, the EC2 instance will prompt you to select the public/private key8.
pair that was created earlier. Select the ec2AccessKey from the drop-down list
box. Click on Launch Instances to launch the EC2 instance. The key pair once
assigned to instance cannot be changed. Make sure you store your private key,
securely.

Introducing AWS Components Chapter 3

[108]

Your EC2 instance will take some time to start.9.

After the EC2 instance is up and running, you should see it listed in the console.10.
You can review the details of the instance to ensure that it is as per what you
configured:

You cannot access the instance as it does not have a public IP associated with it yet. The EC2
instance is assigned an IP address from the VPC subnet, in this case, it is 172.31.18.70.
This EC2 instance can be used only for communication between the instances in your VPC.

Introducing AWS Components Chapter 3

[109]

Next, we create an elastic IP and assign it to the EC2 instance so that it can be accessed via
the public internet.

Creating and associating Elastic IPs (EIP)
EIPs are dynamically re-mappable static public IP addresses that make it easier to manage
EC2 instances. Each EIP can be re-assigned to a different EC2 instance when needed. You
control the EIP address until you choose to explicitly release it. An Elastic IP is associated
with your account and not a particular EC2 instance. Since, public IP addresses are a scarce
resource you are limited to 5. If you need more EIPs then you have to apply for your limit to
be raised. If you have a large deployment then an elastic load balancer (ELB part of AWS) is
placed in front of all the instances thereby consuming one EIP only.

You will be charged for all EIPs not associated with running EC2 instances. It is charged at
0.01$/hour for each unassociated EIP.

Following are the steps to create an Elastic IP:

From the EC2 dashboard, click on Elastic IPs in the navigation pane and then on1.
Allocate New Address. Click on the Allocate button:

You should see the following message that the new address request has been2.
successfully processed. This step allocates a new EIP associated with your
account:

Introducing AWS Components Chapter 3

[110]

Following are the steps to create an Associate IP:

The next step is to associate the EIP to an instance. Click on the Associate1.
Address menu item:

Select the A1ElectronicsEcommerce instance from the drop-down list:4.

Click on the Associate button:5.

Introducing AWS Components Chapter 3

[111]

You should see the following message confirming that the associate address6.
request was successfully completed:

From the EC2 dashboard, click on Instances in the navigation pane then on7.
A1ElectronicsEcommerce to view the details. The EIP is assigned to the instance.
Use ping to test the instance either by the EIP address 34.215.190.229 or by the
domain name ec2-34-215-190-229.us-west-2.compute.amazonaws.com from the
terminal:

Introducing AWS Components Chapter 3

[112]

Configuring the Amazon Relational Database Service
(RDS)
As we have the A1ElectronicsEcommerce EC2 instance is up on the cloud, we now need to
create a RDS instance within our VPC for our A1ElectronicsEcommerce web application.

From the RDS dashboard click on Launch a DB Instance instance. This will start1.
a process of provisioning a RDS instance:

Introducing AWS Components Chapter 3

[113]

The next step is to select the SQL database engine. For our application, we will2.
select MySQL. Click on the Next button:

Introducing AWS Components Chapter 3

[114]

The next step is to decide if the RDS DB instance will be used for production3.
environment or outside of it. Under production environment RDS provides
option for high availability RDS instance. It also provides an option of
provisioning IOPS for your RDS DB instance as per your application’s need. All
this sounds good but the costs can add up, quickly. As we are in a development
mode currently, we will ignore the production choices for now. We select the
Dev/Test - MySQL option, and click on Next:

Introducing AWS Components Chapter 3

[115]

The next step is to configure the RDS instance.4.
License model: Since we are using the MySQL Community Edition,1.
general-public-license is the only option available.
DB engine version: This option allows you to select a specific version2.
of MySQL. Choose the latest unless you have MySQL specific code that
runs for a specific version:

Introducing AWS Components Chapter 3

[116]

DB instance class: This is the same as choosing the EC2 instance type.3.
This will select the virtual server, which will run your MySQL database
engine, faster DB instances can be chosen as per your database
workload after profiling them, db.t2.micro is the only one which is
available for the free tier so we select it.
Multi-AZ deployment: This option is for high availability as discussed4.
earlier. Select No from the dropdown list.
Storage type: Select General Purpose (SSD). The other option is5.
Provisioned IOPS which kicks in only if your allocated storage is 100
GB or more, and Magnetic which is slower.
Allocated storage: You use the minimum, which is 20 GB. The free tier6.
allows storage up to 20 GB:

Introducing AWS Components Chapter 3

[117]

DB instance identifier: This is the identifier for the MySQL server7.
database instance, and this identifier is used to define the DNS entry
for the DB instance. Type a1ecommerce in the text field.
Master username: Master login name to access the DB instance, it8.
needs to start with an alphabet. Enter a1dbroot for the master
username.
Master password: Password for the master username.9.
Confirm password: Type in the master password again.10.
Click on the Next button:11.

Introducing AWS Components Chapter 3

[118]

Next, we configure some advanced settings:5.
Virtual Private Cloud (VPC): This is the VPC network where the DB1.
instance will reside. It is the same default VPC network in which our
EC2 instance resides. Since there is only one VPC defined, select the
Default VPC from the drop down.
Subnet group: This allows for the selection of a DB subnet. A DB2.
subnet is a logical subdivision of the VPC network space. This is useful
in large implementations where you might have a use case for different
DB instances being logically separated from each other. Here the DB
instance is in same subnet as the EC2 instance. This can be achieved by
selecting the correct availability zone. Select default from the
dropdown.
Public accessibility: It is a good security practice to hide your3.
databases from the internet. But then access to the DB instance is only
possible after remotely logging into the EC2 instances running within
the same VPC or by setting up SSH tunnels. During the development
phase, this becomes very inconvenient and frustrating to manage
database schema changes, viewing data, and debugging. So by keeping
things simple select the Yes option. For production DB instances, this
should be set to No and a VPC security group that allows access from
within the VPC should be created and assigned.
Availability zone: Select No preference from the drop-down box. It4.
assigns the appropriate subnet to the DB instance:

Introducing AWS Components Chapter 3

[119]

VPC security groups: Select sq-RDSSecurityGroup and sq-6.
EC2WebSecurityGroup from the list (these security groups were created earlier):

Introducing AWS Components Chapter 3

[120]

In the next set of fields, we specify the Database options.7.
Database name: The name of the database to which an application1.
connects to. Name it a1ecommerceDb.
Database port: The default MySQL port. Do not change the default2.
port number, which is set to 3306.
DB parameter group: Management of DB engine configuration is done3.
via the parameter group. This allows you to change the default DB
configuration. Since we have not created any parameter group, select
the default default.mysql5.6.

Introducing AWS Components Chapter 3

[121]

Option group: An option group allows to set additional features4.
provided by the DB engine to manage the data and the database and to
provide additional security to your database. Since we have not created
any option group, select the default default.mysql.5.6:

Introducing AWS Components Chapter 3

[122]

We disable Encryption option as shown here as we do not want to encrypt the8.
data stored in the database:

Next, we specify the backup parameters for our database.9.
Backup retention period: The number of days Amazon RDS keeps the1.
automatic backup for the instance. The range is between in 1 and 35
days. This helps enable one-click restoration of the data in case of
disaster recovery. Selection of 0 days disables backup retention.
Select 0 from the drop down.
Backup window: The time slot during which the automatic backups2.
take place. The selected time period should be such during which the
database load is least. It is normally set when we deploy the database
in production. During development cycle this can be set to No
Preference:

Introducing AWS Components Chapter 3

[123]

We select Disable enhanced monitoring for our development database:10.

Introducing AWS Components Chapter 3

[124]

Next, we specify the Maintenance options.11.
Auto minor version upgrade: Amazon RDS will automatically update1.
the DB instance only for minor updates. Select the Enable auto minor
version upgrade option.
Maintenance window: Any modifications to the DB instance like2.
changing the DB instance class, storage size, password, multi
availability zone deployment. These changes take place during the
maintenance window period. Again this is useful for production
instances. The maintenance window can be overridden during the time
of modification of the DB instance. Select the No preference option:

Click on the Launch DB instance button. This will create a DB instance and12.
launch it:

Introducing AWS Components Chapter 3

[125]

From the RDS dashboard, click on Instances in the navigation pane and then on13.
a1ecommerce to view the details of the DB instance. If you note there is no IP
address associated with the DB instance, the only way you can access this DB
instance is via the endpoint:

Introducing AWS Components Chapter 3

[126]

Here, we display the Connect settings section of the details screen as we will be14.
using some of them in the subsequent steps for installing and verifying the
software stack:

Installing and verifying the software stack
The next step is to remote log into the EC2 instance, and install Apache Tomcat and the
MySQL client libraries. We will use the private key file created and downloaded under
Creating EC2 Instance Key Pairs in an earlier step.

Assign rights to the private key: Copy the private key file to the .ssh folder in
your home directory, if for some reason it does not exists then create it and make
sure that it has read/write/executable rights assigned for the owner (drwx-----).
To log in from your command line, type in the following to assign correct rights
to the private key file downloaded earlier. This assigns read/write and execution
rights only to the file owner. Unless the rights are changed, it will not be possible
to login remotely.

chmod 700 ~/.ssh/AWSBook2EdKeyPair.pem

Remote login: Now, we can login remotely. The default user name for Ubuntu
AMI’s is ubuntu, the IP address to connect to is the EIP of the EC2 instance
is 34.215.190.229, type Yes when you get a warning that the authenticity of
the host 34.215.190.229 can’t be established.

Aurobindos-MacBook-Pro-2:.ssh aurobindosarkar$ ssh -i
~/.ssh/AWSBook2EdKeyPair.pem ubuntu@34.215.190.229
The authenticity of host '34.215.190.229 (34.215.190.229)' can't be

Introducing AWS Components Chapter 3

[127]

established.
ECDSA key fingerprint is
SHA256:GS+9/SSDhI4rI81hEIi14ujeeyMJpMmt49DjCsu+DDU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '34.215.190.229' (ECDSA) to the list of
known hosts.
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1022-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software; the
exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted
by applicable law.

To run a command as administrator (user "root"), use "sudo
<command>". See "man sudo_root" for details.

ubuntu@ip-172-31-18-70:~$

Installing software: The next step is to install Apache Tomcat and MySQL client
libraries on to the EC2 instance. First update the package repositories and then
install the packages.

sudo apt-get update;
sudo apt-get install tomcat7 mysql-client-5.7;

Verify Tomcat7 installation: Open any browser and type in
http://34.215.190.229:8080 . You will see a default Apache Tomcat page on the
browser.
Verify MySQL access from EC2 instance: From the EC2 instance command line,
type the endpoint (URL) from RDS instance dashboard.

mysql -u a1dbroot -p -h a1ecommerce.cpyfddnufvjm.us-
west-2.rds.amazonaws.com -P 3306

Introducing AWS Components Chapter 3

[128]

When prompted for the password, type in the password you entered while creating the DB
instance. At the end of it, you should see a MySQL command prompt.

Repeat the earlier-mentioned step from your development machine. This verifies the DB
instance is accessible from both the EC2 instance and your development machine.

Now, we have the DB instance configured, and the Tomcat web server is up and running,
all we need to do next is to deploy the a1ecommerce application on EC2 instance. But this
needs a minor modification in the configuration file for the code to point to the correct
database instance (now on the AWS cloud instead being in of our development machine).

Change the database endpoint: Check out the latest version from GitHub, and in
the data-access.properties file in src/main/resources/spring folder change
the following properties to:

jdbc.url=jdbc:mysql://a1ecommerce.cpyfddnufvjm.us-
west-2.rds.amazonaws.com:3306/a1ecommerceDb

jdbc.username=a1dbroot # username of Amazon DB instance
jdbc.password=a1dbroot #Password for the Amazon DB instance

After modifying the data-access.properties file, it is time to build the project and copy the
war file to the EC2 instance for deployment. From the root of the project,

mvn package

This will create a1ecommerce.war file in the target folder copy this to the EC2 instance for
deployment.

scp -i ~/.ssh/AWSBook2EdKeyPair.pem ./target/a1ecommerce.war
ubuntu@34.215.190.229:~/

This copies the a1ecommerce.war file from the target folder to the home folder of ubuntu
in the EC2 instance.

sudo cp a1ecommerce.war /var/lib/tomcat7/webapps

Next, we ssh into the EC2 instance and copy the file to the Tomcat webapps folder. This will
deploy the war file to the Apache Tomcat webserver.

Introducing AWS Components Chapter 3

[129]

At this stage, you have successfully completed deploying a web application on the Amazon
cloud. To verify, from the browser, type in the
http://34.215.190.229:8080/a1ecommerce, and you should see the A1Electronics
ecommerce site up and running.

Summary
In this chapter, we described the main AWS services that are most commonly used for AWS
cloud applications development. These included compute, storage and content delivery,
databases, networking, application, administration, analytics, machine learning and
deployment services. Next, we described some strategies to lower your cloud infrastructure
bills. We also explained the purpose and characteristics of environments that are typically
provisioned for cloud development. Finally, we walked you through the process of
provisioning the AWS development infrastructure for our sample application.

In the next chapter, we will focus our attention on how you can design and implement
application scalability on AWS cloud. We will describe some design patterns to achieving
application scalability. Next, we will describe the AWS autoscaling feature and how to
select the best set of rules for configuring it. Finally, we will implement some of these
design patterns in our sample application and implement the autoscaling rules.

4
Designing for and Implementing

Scalability
In this chapter, we will introduce key design principles and approaches to achieving
scalability in applications deployed on the AWS cloud. As an enterprise or a start-up at its
inflection point, you never want your customers to be greeted with a 503 message (that is,
Temporarily Unavailable). The approaches in this chapter will ensure your web and mobile
applications scale effectively to meet your demand patterns, growth in business, and spikes
in traffic. We will also show you how to set up auto scaling in order to automate the
scalability in the sample application.

In this chapter, you shall learn about:

Defining scalability objectives
Designing scalable application architectures
Leveraging AWS infrastructure services for scalability
Setting up auto scaling for your deployed application

Defining scalability objectives
Achieving scalability requires the underlying application architecture to be scalable in order
to fully leverage the highly scalable infrastructure services provided by AWS cloud.

Designing for and Implementing Scalability Chapter 4

[131]

Setting scalability objectives for an application will depend on many factors, such as the
nature of the application, the number of users (peak and average), the growth rate, the
business model (subscription based, free, paid, or freemium model), SLAs, the nature of
customers (businesses or the general public), and so on. It is very important to set some
scalability objectives, however, as operating on the cloud doesn't require you to be
absolutely accurate about hard-to-estimate parameters. On the cloud, you can always
respond quickly to your rapidly evolving business. So, while it is good to have sufficient
information to guide you initially, you don't need to spend excessive time and effort trying
to arrive at very accurate estimates.

At a high level, your application should respond proportionally to the increase in the
resources consumed, and be operationally efficient and cost-effective. For example,
executing a "lift-and-shift" strategy for migrating your on-premises applications to the
cloud, followed by a traditional approach of increasing the sizes of your instances to meet
increasing loads, will likely become very expensive. And your application’s increasing
resource requirements will necessitate another move to even larger instances. In most cases,
you will obtain the best results by splitting your application into smaller components, and
then optimizing them using AWS infrastructural features and best practices.

In all cases, an underlying objective is to always try and squeeze as much performance out
of each service/component as possible before scaling and spending additional dollars.

Designing scalable application architectures
In this section, we present some of the common approaches to designing scalable
application architectures. Some of these design principles are not unique to cloud-based
applications, however, they become even more important in a cloud context. Let's review a
few of these design principles in the following sections.

Designing for and Implementing Scalability Chapter 4

[132]

Using AWS services for out-of-the-box scalability
One of the simplest guidelines to follow is leveraging AWS PaaS services wherever possible
to enjoy the benefits of scalability and availability out of the box, without the associated
administrative headaches or design complexity. Don’t reinvent the wheel when ready-to-
use services such as email, queuing, search, databases, monitoring, metrics, logging, and so
on, are available to you from Amazon or other third-party vendors. For example, you can
leverage the RDS or the DynamoDB services available for scalable relational and NoSQL
database services, respectively. Similarly, you can leverage the AWS SQS service, as
it offers a multi-AZ, scalability (unlimited messages), and a secure queuing service
accessible via simple APIs without having to roll out your own implementation or
managing an open-source product deployed on an EC2 cluster.

There are several standardized and highly scalable monitoring, metrics, and logging
services available—use them. Additionally, look for opportunities to get rid of server-based
computing and use AWS Lambda instead. Lambda can be used to implement event-driven
computing functionalities using languages such as JavaScript, Java, and Python.

Using a scale-out approach
Designing an application that can scale horizontally allows you to distribute application
components, partition your data, and follow a services-oriented design strategy. This
approach will help you better leverage the elasticity of the AWS cloud infrastructure. For
example, you can choose the right sizes and number of EC2 instances, automatically and on
demand, to meet your varying demands.

Implementing loosely-coupled components
Loosely-coupled applications are typically implemented using message-oriented
architecture. The more loosely coupled the application components are, the better they will
scale. Design your application to comprise of independent components. Design everything
as a black box and decouple interactions to the extent possible. You can use the AWS SQS
service for this purpose. SQS queues are commonly introduced between application
components to buffer messages. This ensures that the application is functional under high
concurrency, unpredictable loads, and/or load spikes.

Designing for and Implementing Scalability Chapter 4

[133]

Loosely-coupled components enable you to differentially scale out your architecture by
deploying more instances of any given component or by provisioning more powerful
instances for the components that require it. You can also provision specialized EC2
instances to meet the specific requirements of your components or use cases, for example,
computing optimized, memory optimized, and/or storage optimized instances.

In addition, you should try to design your application components to be stateless services,
as much as possible. This will help you distribute your components more effectively. With a
Service-Oriented Architecture (SOA) you can move services into their own tiers, treat
them separately, and scale them independently. This also offers greater flexibility and
understanding of each component. In situations where you need to store session states, it is
important that you do so outside of your component, so that it is accessible from any
instance serving your users' requests. This is especially important in the auto scaling
context, where the number of instances are varying in response to demand.

Loose coupling plus SOA is a winning architectural combination whether on-premises or on
the cloud, so spend the time and effort to architect your applications according to their key
guiding principles.

Implementing asynchronous processing
Implementing asynchronous processing in your application can improve scalability. This is
typically done using AWS SQS queues. However, ensure that you implement a dead letter
queue for queue requests that fail after several retries (usually between three and five
times). You can use the AWS SNS service for notifying components when a message’s
request processing has been completed. You can also create asynchronous pipelines for data
flows within your application using AWS Kinesis data streams, and AWS SQS queues
where you can route your data to different queues to be processed differently.

Leveraging AWS infrastructure services for
scalability
In this section, we will shift our focus to the strategies you can use to leverage the AWS
cloud infrastructure to scale your applications.

Designing for and Implementing Scalability Chapter 4

[134]

Using AWS CloudFront to distribute content
Try to offload as much content as possible to the AWS CloudFront CDN service for
distribution to Amazon edge locations. This can include both static and dynamic content.
For example, static content or files would include CSS, HTML, images, and so on, that are
stored in Amazon S3 (and not on your web server instance). This can reduce load on your
web servers and improve the efficiency of maintaining content (by storing at one S3
location) while reducing latency for your end users and overall cost (by reducing the size or
the number of EC2 instances required for your web servers).

In the case of dynamic content, for example, the repeated queries from many different users
resulting in the same content response from your servers are cached and served up from the
edge locations. This results in deriving similar benefits as in the case of static content
distribution. This approach can be especially useful in speeding up responses to mobile
apps.

Using AWS ELB to scale without service
interruptions
Configure an AWS ELB in your deployment architecture even if you are using a single EC2
instance behind it. This will ensure you are ready to scale up or down without interrupting
your services. ELB ensures the CNAME application access point remains the same, as you
auto scale the number of servers or even replace a fleet of servers behind it. This can also
help you systematically roll out new versions of your application behind the ELB without
service interruptions for your customers.

ELBs work within an AWS region only, however, they can work across multiple AZs within
a region. Typically, for very large installations where you might want to distribute traffic
across multiple AWS regions, you would use the Route53 service.

Using Amazon CloudWatch for Auto Scaling
Amazon CloudWatch is a web service that enables you to monitor and manage various
metrics, and configure alarm actions based on the metrics. A metric is a variable that you
want to monitor, for example, CPU usage or incoming network traffic. A CloudWatch
alarm is an object that monitors a single metric over a specific period. The alarm changes its
state when the value of the metric breaches a defined range and maintains the change for a
specified number of periods.

Designing for and Implementing Scalability Chapter 4

[135]

Amazon CloudWatch can aggregate metrics across pre-defined dimensions, for example,
aggregating the CPU utilization of all EC2 instances in an Auto Scaling group. The alarm
connected to an Auto Scaling policy triggers a scaling event, and the number of instances
are increased or decreased as per the defined policy. For these simple scaling policies, the
reaction is always the same independent of the size of the breach. Such policies lock the
Auto Scaling group while a scaling action is running, and no further alarms can be
raised during this time. Additionally, it evaluates the metric only when no scaling action is
ongoing. However, such policies do not let you control how aggressively you want to react
to the breaches of your metrics.

We can also define Step Scaling policies in which we can define multiple steps in the same
policy. The appropriate scaling step is selected based on the value of the metric that
triggered the alarm, based on the magnitude of the breach. In these policies, the metrics
are continuously evaluated and it does not lock the Auto Scaling group while the action is
evaluated. You can also use additional metrics and define multiple thresholds to specify the
best strategy for your use cases. Overall, Step Scaling policies are the better and more
flexible choice.

Aside from the scaling policies, you can also leverage the Instance Lifecycle hooks for finer
grained control for launching and terminating instances. These hooks are useful in
supporting common use cases including assigning EIP address on launch, registering new
instances with DNS, gathering log files before instances are terminated, investigating issues
with an instance before terminating it, and so on.

In situations of rolling deployments across Auto Scaling groups, you can terminate the
instances one by one, followed by relaunching the instances (the new instances will launch
with the new configurations enabled).

Scaling data services
There are several options for data services optimized for specific use cases available from
AWS. Choose the most appropriate one for your application needs. For example, you can
choose the RDS service for using MySQL databases, and create read replicas for use in your
reporting applications. Read replicas not only serve your application needs efficiently but
also help you reduce the size and number of RDS instances required. Similarly, you can
exploit AWS ElastiCache to further offload requests that need to be served by your master
RDS instance. In many applications, a vast majority of database requests (as high as 80 to
90%) can be serviced from ElastiCache.

Designing for and Implementing Scalability Chapter 4

[136]

Remember to monitor the utilization of your RDS using AWS CloudWatch to tune your
instance sizes. In chatty applications, it can also help to offload some of your data from RDS
to low-latency AWS DynamoDB with ElastiCache to further reduce the cost of RDS usage.

Scaling proactively
You can proactively scale your applications in response to known traffic patterns or special
events. For example, if you have cyclical patterns (daily, weekly, or monthly) in the usage of
your application, then you can leverage that information to scale up or down the number of
instances at the appropriate time to handle the increase or decrease in demand, respectively.
You can also rapidly scale up just minutes in advance of special events, such as flash sales
or in response to some major breaking news, to handle a huge surge in traffic.

Using the EC2 container service
For building and running distributed applications, we need think in terms of using a
different primitive task (that you can move around) and not servers or machines. Currently,
you may be thinking about a pool of resources or EC2 instances. However, you need to
change that to thinking about where you can take a task and drop it in so that it will run
appropriately. ECS helps in distributing applications/microservices over a cluster with
managed task life cycle management. It has tight integration with other AWS services (IAM,
ELB) and can run multiple schedulers with prioritization (for example, jobs from different
teams with different priorities). It supports Auto Scaling groups where we can scale tasks
by running more copies of them to take on increased traffic. They can be behind an ELB and
appropriate metrics can be used to scale your fleet. Service updates are a lot easier to
manage as well.

Refer to the extensive documentation available from Amazon for
architectural blueprints, technical blogs, white papers, and videos
containing in-depth guidance on effective scalability strategies to follow
for each of the AWS services.

Designing for and Implementing Scalability Chapter 4

[137]

Evolving architecture against increasing
loads
Auto scaling is not the single thing that fixes everything. In real life, you will probably
evolve your architecture against an increasing number of users or load. In this section, we
will suggest actions you can take at each stage of your growth starting from a handful of
users right up to tens of millions of users for a typical web stack.

Scaling from one to half a million users
In the beginning, you can get started with a single EC2 instance that hosts your web service
and the DB on the same instance. You can provision an EIP and use Route53 for DNS
services. This should be sufficient to handle a typical website or service for a new business.

As your number of users increases to several hundreds or thousands, there are several easy-
to-upgrade options available to scale your infrastructure. The simplest first step is to get a
bigger EC2 instance (scale vertically). You can also leverage instance types (high I/O,
memory, compute, storage intensive) based on your specific workloads. Additionally,
increasing PIOP settings can give you the results you need to handle an increasing number
of users. However, be aware that you will hit an upper limit in terms of how far you can
scale this way. Additionally, having no redundancy or failover mechanisms as the number
of users increases will become a major cause for worry.

The first change to the architecture is to separate the DB from the web tier. This step can
instantly improve overall scalability, as it enables the web and data tiers to be
independently scaled. Web and data tiers don’t have the same requirements, so having the
ability to scale them separately gives you more flexibility to align the architecture more
closely to your workloads.

Typically, you would start with a relational database because you are probably most
familiar and comfortable with it. It is a well established and well-worn technology; there is
lots of existing sample code available, active communities, many reference books, and tools
to help you with anything you are likely to face. For most workloads, you aren’t going to
break RDBMS down to several million users. There are well-documented patterns for
scaling relational databases.

Designing for and Implementing Scalability Chapter 4

[138]

However, there may be exceptions where relational databases are not suitable for your first
year of operations, and deploying a NoSQL database makes more sense. These use cases
could be due to massive data volumes (>5 TB) expected in the first year itself. Other reasons
for deploying a NoSQL solution could be due to requirements such as super low-latency
use cases, highly non-relational data, or unstructured data requiring schema-less data
constructs, rapid ingestion of streaming data (thousands of records per second), and so on.
In many applications, the functional and non-functional requirements will most likely be
best served by having both SQL and NoSQL databases in your application.

At this stage, you will also need to decide between the self-managed database (on Amazon
EC2) or a fully managed AWS database service (such as RDS, DynamoDB, Redshift, and
Aurora). Though it is likely that you have sufficient familiarity with setting up and
managing a database like MySQL, you may want to consider a MySQL-compatible RDS
service such as Aurora instead to avoid managing your own database servers. Aurora
automatically scales storage up to 64 TB and can have 15 read replicas currently.
Additionally, the service comes with continuous (incremental) backups to Amazon S3 and
six-way replication across three AZs. It is an economical, performant, and scalable
alternative.

As the number of users goes over a thousand, you will want to consider a more distributed
architecture for higher scalability and High Availability. For example, consider distributing
the web tier across two AZs, and a multi-AZ DB deployment to enable replicated DBs
across the two AZs. You can also include a classic elastic load balancer to distribute the load
evenly and get HA out of the box. The load balancing service scales automatically and
performs health checks on the instances registered with it. The ELB won't send traffic to
unhealthy instances. You can also consider content-based routing with an application load
balancer. Using these basic approaches can get us pretty far, especially with the ELB
helping us to scale horizontally and upgrading instance types to scale vertically.

As we move to handling traffic for tens of thousands of users, we can consider additional
load balancing for various services and instances across multiple AZs. We can now add
read replicas to reduce load on the master DB and allow more scalability in the data tier.

As you scale, don't lose sight of performance, efficiency, and costs involved. Consider
lightening the load on your origin servers by leveraging CloudFront and S3—take the static
content and put it in S3 buckets and front them with CloudFront. Amazon S3 object-based
storage is an economical storage option that is great for static assets, is infinitely scalable,
and can store objects up to 5 TB in size with optional encryption. CloudFront can cache
content for faster delivery, lowers load on the origin, and can deal with both static and
dynamic content. It also supports custom SSL certificates and low TTLs (as short as zero
seconds, optimizing connection to the origin).

Designing for and Implementing Scalability Chapter 4

[139]

The service is optimized for AWS. With CloudFront, the ability to scale improves, reduces
load on the origin, and improves response times significantly. These steps can make the
web tier a lot more lightweight.

We can introduce DynamoDB at this stage. DynamoDB is a managed NoSQL database
that is fully distributed and fault tolerant and supports provisioned throughput. You can
provision the reads separately from the writes, and achieve fast predictable
performance. You can also use DynamoDB to store session date data to create a stateless
application. If the state information is removed from the web tier, it greatly increases your
ability to scale it while maintaining a good customer experience.

We should also start using ElastiCache at this stage. ElastiCache is a managed Memcached
or Redis service that can scale from one to many nodes. It is a self-healing (replaces dead
instances) and performant (single digit ms speeds) caching service. Note that the
Memcached option is local to a single AZ, however, multi-AZ configurations are possible
with Redis. For high access queries, you should not keep going back to the data tier. You
can store the results in the cache instead for better user experience and scale the data tier in
a more reasonable manner.

Scaling from half a million to a million users
As we cross half a million users, we definitely need to implement auto scaling for the
automatic resizing of compute clusters. At this stage, we need to know our requirements in
terms of defining min/max pool sizes, the CloudWatch metrics to drive scaling, and using
on demand and Spot instances in our auto scaling groups. Over provisioning resources for
peak periods will get expensive at these volumes. You can create an auto scaling group for
web servers in the web tier across the AZs (if you have been following the suggestions in
the sections, the rest of the architectural components are managed services, and scaling
them is largely Amazon's responsibility).

At the most basic level, we need to be clear on three parameters for auto scaling: the
minimum, maximum, and the desired number of instances. We should always keep the
minimum number of instances running, and launch or terminate new instances to meet
desired capacity. As a practice, we never start more than a maximum number of instances,
and as much as possible we keep the instances balanced across the AZs.

Designing for and Implementing Scalability Chapter 4

[140]

We will need to define launch configurations to determine what is going to be launched
(EC2 instance type and size) and the AMI to be used along with the security groups, SSH
keys, IAM instance profile, and users' data (essentially any arbitrary data). Bootstrapping
the infrastructure requires the installation and setup to be fully automated. We use an AMI
with all the required software and configurations specified. These configurations can be
specified via user data, or using tools like Chef/Puppet/Ansible and AWS CodeDeploy.

If we are terminating an instance due to reduced traffic then we also need to de-register the
instance from the ELB, select a target instance, and then terminate it. Which instance is
terminated can be configured using termination policies, and the service will try to
terminate the instance in a manner that balances the capacities across the AZs. Termination
policies determine which instances are terminated first. There are several options such as
the longest running, the one having the oldest launch configuration, and the closest to the
full billing hour (for better cost control, as it gets the most value out of the terminating
instance).

Scaling plans determine when an Auto Scaling group scales in or scales out. If the desired
capacity is greater than the current capacity then we launch new instances, and if
the desired capacity is less than the current capacity then we terminate instances.

There are different types of scaling plans. The default plan ensures that the current capacity
of healthy instances remains within boundaries (never less than the minimum). We can also
modify the desired capacity (via the API, console, or CLI) to trigger a scaling event. This
type of manual scaling is helpful for testing, and can be set and changed through scripts
based on requirements at any given point. A scheduled scale in/scale out plan is based on
timed events, for example, in order to align with extended business hours, we can have a
plan that scales up at 8 A.M. and scales down at 8 P.M. We can also do dynamic scaling that
scales based on Amazon CloudWatch metrics and thresholds.

You should also configure the Auto Scaling groups to work with one or more ELB. This
integration will enable the registering of new instances and deregistering instances on
termination automatically. Furthermore, we can use ELB metrics when defining our auto
scaling policies.

Scaling policies determine when to change capacity. The capacity can be changed in
different ways. For example, setting a fixed capacity as the desired capacity and
adding/removing a fixed number of instances or adding/removing a percentage of existing
capacity. Similarly, dynamic scaling policies trigger scaling events based on demand. The
demand is measured based on metrics and the changes in metrics can be mapped to scaling
policies.

Designing for and Implementing Scalability Chapter 4

[141]

Scaling from a million to ten million users
As you approach a million users, you are going to have to implement further along the lines
of what we have discussed so far including multi-AZ deployments, elastic load balancing
between tiers, auto scaling, SOA, serving content smartly (S3, CloudFront), caching DB
data, and moving state information off tiers that auto scale.

As you grow your user base in the range of 5 to 10 million you will need to focus a lot more
on the data tier. This would be the time to think about database federation, that is, splitting
the DB into multiple DBs based on the function/purpose, sharding (splitting a dataset into
multiple parts), and moving some of the functionalities to other types of specialized DBs
(such as NoSQL and graph databases).

However, note that database federation will make it harder to do cross-functional queries
and it will not help in situations where you have individual functions or tables that are
huge. In some ways, database federation is essentially delaying sharding and/or a shift to
using NoSQL databases. Sharding brings in horizontal scaling but makes it more complex
at the application level. This approach essentially has no practical limit on scalability.
Typically, the data is sharded by function or key space; and the strategy can be
implemented with both RDBMS and NoSQL databases. However, shifting over to using
NoSQL databases solves the scale problem in the longer term. By leveraging managed
services like DynamoDB, the move to NoSQL databases can be a lot simpler than managing
your own NoSQL database clusters.

Moving to beyond ten million users requires you to deeply analyze your entire stack, and
possibly look at custom solutions to solve your scalability issues. You should explore more
fine-tuning of your application, move to services architecture for most of the
features/functionalities, move from multi-AZ to a multi-region deployment, and look for
opportunities to leverage AWS ECS and AWS Lambda services wherever you can.

Event handling at scale
For real-time streaming applications, supporting hundreds of thousands of concurrent users
in a reliable, secure, and auditable manner that is also cost effective requires different
design considerations and additional AWS services to be implemented in a scalable
manner. In such applications, you may need to plan for growth from one thousand events
currently to a future of 15 million events per second. In the following sections, we will
explore typical AWS services used for implementing a large-scale API-based architecture
and analyzing streaming data in real time with Amazon Kinesis Analytics.

Designing for and Implementing Scalability Chapter 4

[142]

Implementing a large-scale API-based
architecture with AWS services
In the upcoming sections, we will consider AWS services that can be leveraged for
implementing a large-scale API-based architecture. These services include Amazon API
Gateway, AWS Lambda, Amazon S3, Elasticsearch, RDS, DynamoDB, CloudWatch, and
others. As we have covered services such as Amazon S3, RDS, and DynamoDB previously,
we will focus more on some of the other services used.

Using Amazon API Gateway
Amazon API Gateway is a fully managed service used for hosting HTTPS APIs on top of
AWS. This service helps in creating, publishing, maintaining, monitoring, and securing
APIs. It supports standard HTTP methods, and you can authenticate and authorize requests
using services such as IAM and Conginito. Amazon API Gateway provides highly scalable
parallel processing, DDoS protection, and features for throttling, metering, and capping
usage for backend systems.

Its benefits include the ability to create a unified API frontend to multiple microservices and
supporting multiple versions of the APIs (as we iterate through dev, test, and release of
APIs). CloudFront distribution can created for the API at no extra charge, and the API
gateway can be set up to cache responses. The backend can be implemented as a Lambda
function or a HTTP endpoint, and it can be integrated with CloudWatch for monitoring.

Compared to implementing code for HTTP/HTTPS yourself, the API Gateway is a highly
integrated service that scales automatically and can handle thousands of concurrent calls,
while providing support for authorization, access control, monitoring, and API version
management.

Using AWS Lambda
AWS Lambda is a serverless, event-driven compute service that runs your function code
without you having to manage or scale servers. It provides an API to trigger the execution
of your functions and ensures that the function are executed in parallel, regardless of scale.
It provides additional capabilities for your functions such as logging and monitoring.
Lambda functions are essentially stateless, trigger-based code execution. For example, the
streaming events could be landing on S3 or DynamoDB, or they could be an API Gateway
call, or even a scheduled job. These functions can access services inside or outside your
VPC.

Designing for and Implementing Scalability Chapter 4

[143]

Compared to provisioning and managing EC2 instances yourself, using the Lambda service
means no servers or instances to manage and it comes with built-in scaling and a fixed cost
model. However, as AWS Lambda is a relatively new service, you will have limited
experience with it, and you will be limited to using CloudWatch for monitoring (at this
time). Additionally, there is a 6 MB data limit on Lambda functions, and debugging the logs
can be a very time-consuming task.

Using Kinesis Streams
Kinesis Streams is a fully managed service for real-time processing of high-volume
streaming data. It processes data in real time, and enables highly scalable parallel
processing. There are source libraries for sending data to and reading data from a stream. It
synchronously replicates your data across three facilities, and is integrated with many AWS
and third-party services. It also supports SSL and automatic encryption of data once it is
uploaded.

AWS Kinesis makes large-scale data ingestion a lot simpler. It is easy to administer. You
have to essentially create a new stream and set the desired capacity in terms of shards. You
can scale your capacity to match your data throughput rates and expected volumes. It is
typically used to build real-time cloud-based applications, for example, the continuous
processing of streaming log data. It provides a cost-efficient mechanism for streaming
workloads of any scale.

With Kinesis you can process very high volumes of streaming data (currently up to 15
million records at peak load and growing). As a managed service you also don’t have to
predict storage and volume requirements as you would have to do with Apache Kafka and
ZooKeeper clusters. It also comes with cross AZ replication. However, remember to
configure the max data retention settings (from 24 hours to 7 days) or you risk losing your
records.

Using Elasticsearch
Elasticsearch is a powerful real-time, distributed, open source search and analytics engine
built on top of Apache Lucene, a schema-free and developer-friendly RESTful API. Amazon
Elasticsearch Service is a managed service that makes it easy to set up, operate, and scale
Elasticsearch clusters in the cloud. It comes with built-in Kibana and Logstash plugins.

Designing for and Implementing Scalability Chapter 4

[144]

You can modify clusters with no downtime, and it can be integrated with many AWS
services including CloudWatch, Lambda, DynamoDB, and so on. It supports the
Elasticsearch API and is a drop-in replacement for your existing Elasticsearch clusters. In
addition, you only pay for what you use. It provides simple interfaces for cluster creation
and configuration management. These clusters are self-healing clusters, HA (clusters are AZ
aware and can spread to multiple AZs), and have high data durability.

Compared with Lucene and Elasticsearch company's offering, Amazon Elasticsearch is a
managed service that provides out of the box integration with Amazon Kinesis and S3.
However, note that Amazon's version is typically a release behind the official Elasticsearch
release, so it may not have the latest features available.

Analyzing streaming data in real time with
Amazon Kinesis Analytics
Most data is produced continuously. For example, mobile apps, logs, IoT sensors, and so on
generate data at a furious pace. Recent data is considered highly valuable, if you act on it in
time. These insights can diminish in value or perish with the passage of time. A different set
of tools for collecting and analyzing real-time data is required for implementing such
applications. The fast pace and variable rates (bursts) of incoming data need to be stored
durably and processed correctly, in a continuous, fast, and reliable manner. Typical use
cases for such processing include time series analytics, feeding real-time metrics, and
generating real-time alarms and notifications.

Amazon Kinesis Stream makes it easy to work with real-time streaming data. You
can reliably ingest and durably store streaming data at a low cost. Additionally, you can
build custom real-time applications to process streaming data. It also provides the ability to
scale using a configurable number of shards. Shards give you a certain amount of
throughput, for example, a single shard gives you 1,000 writes per second or 1 MB of total
ingestion. Increasing the number of shards to 10 shards will give you approximately 10,000
writes per second.

Designing for and Implementing Scalability Chapter 4

[145]

Using Amazon Kinesis Firehose
Kinesis Firehose lets you load massive volumes of streaming data. It provides a means to
reliably ingest and deliver batched, compressed, and encrypted data to S3, Amazon S3,
Amazon Redshift, and Amazon Elasticsearch Service (Amazon ES) destinations. A UI
driven point-and-click setup with zero administration makes it simpler for the developers
to leverage the seamless elasticity of Kinesis Streams under the hood.

Using Amazon Kinesis Analytics
Amazon Kinesis Analytics enables the analysis of data streams using standard SQL queries.
It lets you interact with streaming data in real time using SQL and to build fully managed
and elastic stream processing applications that process data for real-time visualizations and
alarms.

Building real-time applications with Amazon Kinesis
Analytics
Typically, it is a three step process to build real-time applications:

Connect to the streaming source: Streaming data sources include Amazon1.
Kinesis Firehose or Amazon Kinesis Streams. Input formats supported include
JSON, CSV, variable column, or unstructured text. Each input has a schema that
can be automatically inferred but you can also manually edit the schema. Ensure
you carefully review and test inferred input schema. You might need to manually
update the schema to handle nested JSON with greater than two levels of depth.
Writing the SQL code: Build streaming applications with SQL statements. It2.
provides robust SQL support and advanced analytic functions out of the box.
Additionally, it provides extensions to the SQL standard that work seamlessly
with streaming data. It has built-in support for at-least-once processing
semantics. Best practices include avoiding time-based windows of greater than
one hour and using smaller SQL queries, with multiple in-application streams,
rather than a single, large query.
Continuously deliver SQL results: You can send processed data to multiple3.
destinations: S3, Redshift, AWS ES (through Firehose), and Streams (with AWS
Lambda integration for custom destinations). It gives you end-to-end processing
speeds that are in the sub-second range (depending on the query).

Designing for and Implementing Scalability Chapter 4

[146]

Additionally, you can also reference data sources (S3) for data enrichment purposes. As a
practice, you should limit the number of applications reading from same source to avoid
exceeding the provisioned throughput. For example, for an Amazon Kinesis Streams
source, limit the total number of applications to two applications, and for Amazon Kinesis
Firehose, limit it to a single application.

You can set up CloudWatch alarms to track how far behind the application is from the
source and raise alarms accordingly. You can also increase input parallelism to improve the
performance. For example, if the application is not keeping up with the input stream, then
consider increasing input parallelism to create multiple source in-application streams.

Setting up Auto Scaling
This section introduces you to dynamic scaling for your deployed application. As
explained, the application will scale out; more EC2 instances will be added or scaled in.
That is, the running of EC2 instances will be removed, based on some measurable metric.
We will select the metric from a defined set and apply rules so that our Auto Scaling can
scale in or out based on these rules.

AWS Auto Scaling construction
To implement AWS Auto Scaling, we will create an Elastic Load Balancer (ELB), a base AMI
which will be an EC2 instance running our e-commerce application, a launch configuration
(the base AMI to launch in an EC2 instance), CloudWatch alarms to add/remove instances
that apply to an Auto Scaling group, and finally an Auto Scaling group.

We will perform the steps in the following sections to implement auto scaling for our
sample application.

Creating an AMI
An Amazon Machine Image (AMI) is a master image used for creating virtual servers on
the Amazon cloud. An AMI contains instructions to launch an EC2 instance, and includes
information pertaining to an operating system, a machine architecture of 32 bit or 64 bit, the
software stack of your applications, launch permissions, disk sizes, and so on. Typically,
you will start with a basic AMI provided by Amazon, the user community, or the
marketplace, and then customize it as per your requirements. You can also create an AMI
from a pre-existing EC2 instance.

Designing for and Implementing Scalability Chapter 4

[147]

An AMI is a prerequisite for creating and using an auto scaling group. The way it works is
that whenever a scale out is required, auto scaling uses the AMI to create an EC2 instance
and adds it to the group. We will use the A1ElectronicsEcommerce instance that we created
in Chapter 3, AWS Components, Cost Models, and Application Development Environments, to
create the AMI:

From the EC2 navigation pane, click on Instances to view all your EC2 instances.1.
Select the A1ElectronicsEcommerce instance and then right-click to view all the
actions you can perform on the selected instance. Select Image and then click on
the Create Image option from the menu to create an AMI:

The next step is to name the AMI and allocate some disk space to it. On this2.
screen, you only need to be aware of the following configuration parameters:

No reboot: By default, Amazon EC2 shuts down the instance and takes
a snapshot of attached volumes and then creates and registers the AMI.
If this option is checked then the EC2 instance will not shut down, and
the integrity of the filesystem cannot be guaranteed while creating the
AMI.
Delete on Termination: During Auto Scaling, the EC2 instance will be
created and terminated depending on the configured metrics. During
the launch of an EC2 instance, the EBS volumes will be created and
referenced by the AMI (in our case, it is the Root volume), and when
the EC2 instance is terminated the associated volume is not deleted, so
over a period of time you could have many EBS volumes for which you
are unnecessarily paying. As our application is stateless and does not
store any user data on the EBS volume, we can safely delete the EBS
volume at the same time as the instance.

Designing for and Implementing Scalability Chapter 4

[148]

Now, click on the Create Image button:

You should see the following message. Click on the Close button:3.

You should see the AMI listed with the Status as available, which you can see in
the following screenshot:

Designing for and Implementing Scalability Chapter 4

[149]

In the next step, we will create the ELB for our application.

Creating the Elastic Load Balancer
An ELB distributes the incoming requests from the internet/intranet to the EC2 instances
registered with it. The elastic load balancer can distribute the requests to the instances in a
round-robin manner. If you need more complex routing algorithms then either use the
Amazon Route53 DNS service, use Nginx as a reverse proxy, or use HAProxy. Amazon ELB
is designed to handle an unlimited number of concurrent requests per second with
increasing loads. However, it is not designed to handle sudden spikes in the number of
requests that typically occur during special promotional sales, online exams, or online
trading, when you might experience sudden surges. If your use case falls into this category
then you can request that the Amazon Web Service support team pre-warm the ELBs to
handle the sudden load increases.

The ELB consists of two parts :

Load balancer: Monitors and handles the requests coming in through the
internet/intranet, and distributes them across the EC2 instances registered with it.
Control service: It automatically scales the handling capacity in response to
incoming traffic by adding or removing load balancers, as needed, and it also
performs the health checks.

Before creating an ELB, we modify the EC2 security group created in Chapter 3, AWS
Components, Cost Models, and Application Development Environments, to allow HTTP traffic on
port 80 by adding an inbound rule, as shown in the following screenshot:

Designing for and Implementing Scalability Chapter 4

[150]

Follow the steps below to create the ELB:

From the EC2 navigation pane, click on Load Balancers listed under Network1.
& Security, and then on the Create Load Balancer button:

The first step is to select the type of load balancer we want. At this stage, for2.
simplicity, we will create a Classic load balancer. Click on the Create button:

We name the load balancer and configure the protocols it will service:

Load Balancer name: A name which uniquely identifies the load balancer. This
name will be a part of the public DNS name of your load balancer.
Create LB Inside: Allows you to select the VPC where this load balancer will be
deployed. Since we have only one VPC, select the My Default VPC
(172.31.0.0/16).
Create an internal load balancer: A load balancer can be created to serve the
internet traffic in a public subnet or for intranet traffic, that is, between your
internal servers, such as between the web servers and application servers. Check
this only when you want to create an internal load balancer.

Designing for and Implementing Scalability Chapter 4

[151]

Enable advanced VPC configuration: The advanced VPC configuration option
allows you to specify your own subnets. Select this option if you have created
your own subnets and want to use them instead of the default subnets. This
allows your load balancer to route traffic to EC2 instances in other Availability
Zones.
Listener Configuration: A listener is a process which listens for incoming
requests on a specific port from the client end and relays it to an EC2 instance
configured for the protocol and the port. It supports protocols both at transport
layer (TCP/SSL) and application layer (HTTP/HTTPS). Our Apache Tomcat
server listens on port 8080; we enter port 80 for the Load Balancer Port and 8080
for the Instance Port. The acceptable ports for both HTTPS/SSL and HTTP/TCP
connections are 25, 80, 443, 465, 587, and 1024-65535. Select HTTP as the
protocol both on the Load Balancer Protocol and Instance Protocol.

The protocol for the load balancer and the instance should be at the same
layer for a listener configuration. For example, if your load balancer protocol
is using the TCP or SSL protocol then your instance protocol can either be
TCP or SSL and not HTTP or HTTPS:

The next step is to configure the ELB to route the incoming traffic to the subnets3.
in which the application is running. The VPC is configured so that each unique
subnet is associated with an Availability Zone. The purpose of this is to make
your application resistant to failure; if an Availability Zone goes down then all
the application instances in that Availability Zone will not respond and will be
detected via the ELB's health check. The ELB will start routing the data to your
healthy application instances running in the other Availability Zones within the
same region. Since our application is deployed in the us-west-2a Availability
Zone, we add that to our Selected subnets by selecting it from the Available
subnets list:

Designing for and Implementing Scalability Chapter 4

[152]

Now we assign a security group to our ELB. We have already created the sq-4.
EC2WebSecurity Group security group in Chapter 3, AWS Components, Cost
Models, and Application Development Environments (and updated it in this section).
Next, click on the Configure Security Settings button:

Designing for and Implementing Scalability Chapter 4

[153]

You should see the following screen. Now, click on the Next: Configure Health5.
Check button:

Next, we configure the health check. ELB periodically sends requests to test the6.
availability of the EC2 instances. These tests are called health checks. EC2
instances that are healthy at the time of the health check are marked as
InService and the instances that are unhealthy at the time of the health check are
marked as OutOfService. The ELB performs health checks on all registered
instances, regardless of whether the instance is in a healthy or unhealthy state.
However, the ELB will route requests only to InService instances. In your web
application, you define a URL which the ELB can call for a health check. To
reduce network traffic we suggest you have a REST endpoint or a static HTML
page which returns no data, only a 200 OK HTTP response code:

Ping Protocol: The protocol to connect to on the EC2 instance. It can be
TCP, SSL or HTTP/HTTPS. Select HTTP from the dropdown.
Ping Port: The port to connect to with the instance. Enter 8080, which is
the default port of our Apache Tomcat server.
Ping Path: The HTTP/HTTPS destination for the health request. A
HTTP/HTTPS GET request is issued to the instance on the ping port
and the ping path. If the ELB receives any response other than 200 OK
within the response timeout period, the instance is considered
unhealthy.

Designing for and Implementing Scalability Chapter 4

[154]

Response Timeout: Time to wait when receiving a response from the
health check. If the instance does not respond within the set time
period it is considered unhealthy. Use the default value of 5 seconds.
Health Check Interval: The amount of time in-between the health
checks. If you have a low value, then you will increase the network
traffic, but a healthy/unhealthy EC2 instance can be detected quickly
and vice versa. Use the default value of 30 seconds.
Unhealthy Threshold: Number of consecutive health check failures
before declaring an EC2 instance unhealthy or OutOfService.
An OutOfService EC2 instance will only be detected after a time
period (in seconds) of HealthCheck Interval*Unhealthy Threshold. Use
the default value, 2.
Healthy Threshold: Number of consecutive health check successes
before declaring an EC2 instance healthy or InService. An InService
EC2 instance will only be detected after a time period of HealthCheck
Interval*Healthy Threshold seconds. Use the default value, 10:

Next, we add the running instances to ELB. As we are creating this ELB for an7.
Auto Scaling group we can skip this step. The Auto Scaling group when activated
will add the defined EC2 instance to the ELB on the fly:

Enable Cross-Zone Load Balancing: This option allows the ELB route
traffic across Availability Zones.

Designing for and Implementing Scalability Chapter 4

[155]

Enable Connection Draining: This feature only works when it used in
conjunction with auto scaling. In auto scaling, the instances are
dynamically added or removed based on the defined policies. Auto
scaling should not de-register an instance from the ELB when it is in
the middle of processing a request. Enabling the connection draining
option performs two functions: one, it does not de-register the instance
immediately (if it is processing a request), instead it delays the
termination by a predefined time period, and two, it does not route any
new traffic to the instance. After the elapsed time period the ELB will
de-register the instance and hopefully by that time the instance would
have processed all the pending requests. The default time period is 300
seconds; you can change it as per your application needs:

Designing for and Implementing Scalability Chapter 4

[156]

Next, we add a tag to the ELB; enter the Key field as Name and the Value field as8.
A1ElectonicsEcommerce-ELB-us-west-2. Now, click on the Review and
Create button:

The final step is to review all the configuration details and change, if required (by9.
clicking on the Previous button). Now, click on the Create button:

Designing for and Implementing Scalability Chapter 4

[157]

You should see the following message. Click on the Close button:10.

After the ELB has been created it will be assigned a DNS name by which you
can access it over the internet. This DNS name is assigned by AWS and
cannot be changed, moreover it is not a user-friendly name. You would
rather use www.a1eletronics.com than a1electronicsecommerce-
elb-965226090.us-west-2.elb.amazonaws.com. In a production
environment, you would need to associate your custom domain name with
you ELB domain name by registering a CNAME with your DNS provider.

Click on the Description tab and check the Status row. Initially, you might see 11.
the status as 0 of 1 instances in service:

Click on the Instances tab. Initially, you might see the Status as OutOfService:12.

http://www.a1eletronics.com

Designing for and Implementing Scalability Chapter 4

[158]

Shortly thereafter, the Status will change to InService as shown:

At this stage, you can key in the DNS name from the Description tab into a13.
browser, and you should see the homepage of your site (add /a1ecommerce at the
end of the DNS name):

In the next section, we will create a launch configuration.

Creating launch configuration
A launch configuration is a template which is used by the auto scaling group to select and
configure the EC2 instances. This includes configuring the IAM role, configuring the IP
address, disk size, security group, and public-private key pair to access the instances. You
cannot modify the launch configuration after you have created it:

From the EC2 dashboard navigation pane, click on Launch Configurations, then1.
on Create Auto Scaling group, and on the Create launch configuration button to
start the launch configuration creation process:

Designing for and Implementing Scalability Chapter 4

[159]

The first step is to select the AMI; as we have already created an AMI earlier,2.
select it from My AMIs in the navigation pane:

The next step select the instance type. We select t2.micro instance. Now, click on3.
the Next: Configure details button:

Designing for and Implementing Scalability Chapter 4

[160]

In this step, we will configure the AMI. Apart from filling in the usual values,4.
such as the name, most of the other parameters are already discussed in Chapter
3, AWS Components, Cost Models, and Application Development Environments, under
the Creating an EC2 Instance section. Click on the Advanced Details hyperlink to
see all the fields. We select the option to Assign a public IP address to every
instance so that we can SSH into it. As a good security practice, for production
servers select the option of Do not Assign a public IP address for any of the
instances. If you want to access the instances then you can create an EC2 instance
which can only be connected to from your static IP address, and from there you
can access any instance. This is sometimes called a bastion host, or jump host.
Now, click on the Next: Add Storage button:

Designing for and Implementing Scalability Chapter 4

[161]

Next we add storage to the AMI; use the defaults unless your requirement is for5.
high disk bandwidth. Now, click on the Next: Configure Security Group button.

Next, we configure the security group; use the one which was created in Chapter6.
3, AWS Components, Cost Models, and Application Development Environments, under
the Creating Security Groups section (and modified earlier in this section):

Designing for and Implementing Scalability Chapter 4

[162]

Next we review the launch configuration and make changes if required. Now,7.
click on the Review button:

Designing for and Implementing Scalability Chapter 4

[163]

Click on the Create launch configuration button. Before the launch configuration8.
is created you need to provide the public private key pair to SSH into the
instance. Select the public private key created in Chapter 3, AWS Components,
Cost Models, and Application Development Environments, under the Creating EC2
Instance Key Pairs section, the ec2AccessKey. Now, click on the Create launch
configuration button:

You should see the following screen. Click on Create an Auto Scaling group
using this launch configuration button:

Designing for and Implementing Scalability Chapter 4

[164]

Creating an Auto Scaling group
After the launch configuration is created you are directly taken to the creation of Auto
Scaling groups:

The first step is to specify the auto scaling group details:1.
Launch Configuration: The launch configuration for this auto scaling
group. This is pre-filled in our case as A1EcommerceLaunchConfig.
Group name: The name of the group for this Auto Scaling group.
Group size: The size here refers to the minimum number of instances
that run inside the auto scaling group. This number typically depends
on the load the application is expecting and how many requests a
single instance can serve without any latencies. Since ours is a demo
with the aim to keep the costs to a bare minimum, we start with one
instance.
Network: Select the VPC where the auto scaling group will launch. Use
the default VPC already created in Chapter 3.
Subnet: Select the default subnet for the Auto Scaling group within the
selected VPC.

Click on the Advanced Details link to expand it:

Designing for and Implementing Scalability Chapter 4

[165]

Load Balancing: An Auto Scaling group can be associated with an elastic load
balancer. Select the elastic load balancer we created earlier in this chapter in the
Creating Elastic Load Balancer section, a1electronicsecommerce-elb. If you are
using other means of load balancing for your Auto Scaling group then uncheck
this option.
Health Check Type: The Auto Scaling group performs health checks on the
instances in the group and replaces the failed instances with new ones. It can
either use the results of the elastic load balancer or monitor the state of the EC2
instance to detect a failed instance. Select the ELB option since we have
configured our auto scaling group to use an ELB.
Health Check Grace Period: When an instance comes up it might take some time
before it starts responding to the health checks. The time should always be
greater than the expected boot time of the instance plus the startup time of the
application. Choose the default value of 300 seconds. Now, click on the Next:
Configure scaling policies button:

Next we configure the scaling policies for the Auto Scaling group. A policy is a2.
rule which defines how to scale in our response to varying conditions. The two
options are:

Keep this group at its initial size: This is a static option. The auto
scaling group does not scale in or out the number of instances specified
for group size (as defined earlier). The Auto Scaling group will monitor
and replace any failed instances.

Designing for and Implementing Scalability Chapter 4

[166]

Use scaling policies to adjust the capacity of this group: This option
allows the auto scaling group to scale in or out dynamically depending
the conditions. These conditions are alarms set in CloudWatch which
monitor a pre-selected metric of an AWS resource. Whenever an alarm
goes off, breaching the metric limit, CloudWatch sends a message to
the scale-in or the scale-out policy which in turn invokes the scaling
activity. There are two policies to be defined, one for scaling in and the
other for scaling out.

Set the minimum and maximum instance in the Auto Scaling group. This depends
on your application and the server's instance type. For our purpose, set this
minimum to 1 and maximum 2. Next, we define the policy which will increase the
number of instance in an Auto Scaling group when an alarm associated with it
goes off. Now, click on the Scale the Auto Scaling group using step or simple
scaling policies link:

Designing for and Implementing Scalability Chapter 4

[167]

You should see the following screen:3.
Name: Name of the increase group. Keep the default value.
Execute policy when: This is where we create an alarm which will be
triggered by CloudWatch when it is breached. Since there are no
alarms set, click on Add new alarm. See step 5 for more details.
Take the action: When the alarm triggers, we can either add or remove
an instance in terms of either percentage of total instances or by a fixed
number of instances. Since it is a scale-out situation, we add an
instance to the auto scaling group. Adding instances can be done either
in terms of percentage of the total machines running in the auto scaling
group or by a fixed number of instances. Since the maximum instances
in our auto scaling group is two, increasing by a percentage does not
make sense.

Now, click on the Add new alarm link:

You should see the following screen. Now, click on the create topic hyperlink:4.

Designing for and Implementing Scalability Chapter 4

[168]

Your should see the following screen. Fill in the details for the topic name and5.
enter an email address in the recipients field.

Designing for and Implementing Scalability Chapter 4

[169]

When creating a CloudWatch alarm for scaling out, it is very important to choose
the right set of parameter values for the pre-conditions (of the scale-out). The idea
is to trigger the alarm 5 to 10 minutes before the 75% of the target threshold is
reached. You need to take into account the bootup time of the instance as well as
whether the application before the instance is ready to serve the requests; hence
we trigger early and catch up with the future demand. The metric we are using to
trigger the alarm is CPU utilization. The other useful metrics which can be used
are network utilization and memory utilization. The alarm we want to set is
trigger the alarm when the CPU utilization of the EC2 instance is greater than
60% for at least 5 minutes. The fully filled out screen details are displayed as
follows. Now, click on the Create Alarm button:

Designing for and Implementing Scalability Chapter 4

[170]

You should see the following screen:

Next, we will configure the policy for decreasing the group size. As done before,6.
we create a separate topic for the scale in part. The filled out details are as
shown. The alarm we want to set is trigger the alarm when the CPU utilization
of the EC2 instance is less than 30% for at least 20 minutes. Click on the Create
Alarm button:

Designing for and Implementing Scalability Chapter 4

[171]

You should see the following screen:7.
Decrease Group Size: Next, we define the policy which will decrease
the instance in an auto scaling group when an alarm associated with it
goes off.
Name: Name of the decrease group. Keep the default value.
Execute policy when: This is where we create an alarm which will be
triggered by CloudWatch when it is breached. Since there are no
alarms set, click on Add new alarm.
Take the action: When the alarm triggers we can either add or remove
an instance in terms of either the percentage of total instances or by a
fixed number of instances. Since it is a scale-in situation, we remove an
instance from the Auto Scaling group. Adding instances can be done
either in terms of the percentage of total machines running in the Auto
Scaling group or by a fixed number of instances. Since the minimum
instances in our Auto Scaling group is one, decreasing it by a
percentage does not make sense.

Change the number of instances to one for the Take the Action field for both
the groups (Add one for Increase Group Size and Remove one for Decrease
Group Size). Click on the Next: Configure Notification button:

Designing for and Implementing Scalability Chapter 4

[172]

Next, we configure the Auto Scaling group to send the notifications to the8.
Amazon SNS topic whenever a scaling event takes place. Currently, we are only
interested in fail to launch and fail to terminate scaling events, but in production
it is strongly recommended to send all the scaling events. Now, click on the Add
notification button:

You should see the following screen. For the Scale Out topic, select the options9.
for launch and fail to launch, and for the Scale In topic select the terminate and
fail to terminate options. Now, click on the Next: Configure Tags button:

Designing for and Implementing Scalability Chapter 4

[173]

Next, we configure tags; these tags will be applied to all the instances managed10.
by the Auto Scaling group. A maximum of 10 tags can be configured. This is
useful when there are many auto scaling groups for different layers. It becomes
easier to identify the EC2 instances in the dashboard. Make sure you to select the
Tag New Instances option. Enter the Key field as Name and the Value field as
A1EcommerceASG. Now, click on the Review button:

>

The next step is to review and create the Auto Scaling group. From the navigation11.
pane of the EC2 dashboard, click on Auto Scaling Groups; this will list all the
auto scaling groups. When the Auto Scaling group is created it also creates the
alarms in CloudWatch and topics in SNS. When the Auto Scaling group starts, it
starts with the minimum number of instances. Now, click on the Create Auto
Scaling group button:

Designing for and Implementing Scalability Chapter 4

[174]

You should see the following message. Click on the Close button:12.

At this stage, check your emails. You should see two emails: one for the Scale Out13.
and the other for the Scale In topic. In the following screenshot, we show you the
Scale In message only. Click on the Confirm subscription hyperlink:

Designing for and Implementing Scalability Chapter 4

[175]

You should see the following screen confirming the subscription:14.

You have now completed the Auto Scaling group creation process. In the next section, we
will test the Auto Scaling group to ensure it is functioning as expected.

Testing Auto Scaling groups
The next step is to test the Auto Scaling group; it should add an instance when the CPU
utilization is greater than 60% for 5 minutes and remove an EC2 instance if the CPU
utilization falls to less than 30% for 20 minutes. The easiest way to test this is to load the
CPU for more than 5 minutes and check if an EC2 instance is added. As we have configured
the launch configuration to assign a public IP address to an instance, the public IP address
of the instance is available from Instances in the EC2 dashboard navigation pane.

Log in to the instance via ssh:

ssh -i ~/.ssh/AWSBook2EdKeyPair.pem ubuntu@34.215.190.229

To tax the CPU, use bc, which is precision calculator language to compute a value that will
take a lot of time. For example, computing 2 to the power of 10 billion here, will push the
CPU to 100%:

echo 2^1234567890 | bc

Now, we have set the stage for the auto scaling group to add a new instance whenever the
average load is higher than 60% for more than 5 minutes. There are multiples ways to verify
that an instance has been added when the scale out alarm is breached.

Designing for and Implementing Scalability Chapter 4

[176]

As we have set a notification with the scale out alarm, an email will be sent to the
configured email address with all the alarm details.

A new EC2 instance is added to the Instances view in the EC2 dashboard.

The Auto Scaling Group view in the EC2 dashboard has a tab for Scaling History which
displays all the scaling events.

In the same way, we can verify the scale in by the Auto Scaling group, that is, the removal
of an EC2 instance when the average CPU utilization of the EC2 instances falls below 30%
for a period of 20 minutes. This can be achieved by ending the bc task. The average CPU
utilization of the instances will fall below 30% and the scaling in alarm will be breached
after a period of 20 minutes.

Summary
In this chapter, we reviewed some of the strategies you can follow for achieving scalability
for your cloud applications. We emphasized the importance of both designing your
application architecture for scalability and using AWS infrastructural services to get the best
results. We followed this up with sections on implementing API-driven applications and
streaming applications using AWS services. Finally, we implemented auto scaling for our
sample application.

In the next chapter, we will shift our focus to strategies for achieving high availability for
your cloud-based applications. We will review some application architectural principles
and AWS infrastructural features to implement high availability. We will also include a
hands-on section that will walk you through the process of implementing high availability
in the sample application.

5
Designing for and Implementing

High Availability
In this chapter, we will introduce some key design principles and approaches to achieving
high availability in your applications deployed on the AWS cloud. As an enterprise or a
start-up, you want to ensure that your mission critical applications are always available to
serve your customers. The approaches in this chapter will address availability across the
layers of your application architecture including availability aspects of key infrastructural
components to ensure that there are no single points of failure.

In order to address availability requirements, we will use AWS infrastructure (Availability
Zones and Regions), AWS Foundation Services (EC2 instances, Storage, Security and Access
Control, and Networking), and AWS PaaS services (DynamoDB, RDS, CloudFormation,
and so on). In addition to availability, we will describe several approaches used for disaster
recovery (DR). We will also show you how to implement high availability for our sample
application.

In this chapter, you shall learn the following topics:

Defining availability objectives
Nature of failures
Setting up VPC for high availability
Using ELB and route 53 for high availability
Setting up high availability for application and data layers
Implementing high availability in the application
Using AWS for disaster recovery
Testing the disaster recovery strategy

Designing for and Implementing High Availability Chapter 5

[178]

Defining availability objectives
It is easy to get confused between HA and cost optimization objectives because product
owners will often push for cost optimization while ignoring their availability requirements
until something fails. As a standard practice, remember to always prioritize availability
goals and only then look at ways to optimize your costs.

Achieving high availability can be costly. Therefore, it is important to ensure that you align
your application's availability requirements with your business objectives. There are several
options to achieve the level of availability that is right for your application. Hence, it is
essential to start with a clearly defined set of availability objectives and then make the most
prudent design choices to achieve those objectives at a reasonable cost. Typically, all
systems' functionality and services do not need to achieve the highest levels of availability
possible, but at the same time, ensure that you do not introduce a single point of failure in
your architecture through dependencies between your components. For example, a mobile
taxi ordering service needs its ordering-related service to be highly available; however, a
specific customer's travel history need not be addressed at the same level of availability.

The best way to approach high availability design is to assume that anything can fail, at any
time, and then consciously design against it.

“Everything fails, all the time.” - Werner Vogels, CTO, Amazon.com

In other words, think in terms of availability for each and every component in your
application and its environment because any given component, at any given time, can turn
into a single point of failure for your entire application. Availability is something you
should consider early in your application design process, as it can be hard to retrofit the
same later. In addition, it is important to understand that availability objectives can
influence and or impact your design, development, test, and running of your system on the
cloud.

Finally, ensure that you proactively test all your design assumptions and reduce
uncertainty by injecting or forcing failures instead of waiting for random failures to occur.

Designing for and Implementing High Availability Chapter 5

[179]

Nature of failures
There are many types of failures that can happen at any time. These could be a result of disk
failures, power outages, natural disasters, software errors, and human errors. In addition,
there are several points of failure in any given cloud application. These could include DNS
or domain services, load balancers, web and application servers, database servers,
application services-related failures, data center-related failures, and so on. You will need to
ensure that you have a mitigation strategy for each of these types or points of failure.

It is highly recommended that you automate your recovery strategy and thoroughly test as
many of these processes as possible.

Currently, the AWS Cloud operates 44 Availability Zones (AZs) within 16 geographic
Regions around the world, with announced plans for 17 more Availability Zones and six
more regions. The high-speed connections between AZs allow to architect highly available
applications across different physical locations. In the next few sections, we will discuss
various strategies to achieve high availability for your application. Specifically, we will
discuss the use of AWS features and services as follows:

VPC
Amazon Route 53
Elastic Load Balancing (ELB)
Auto Scaling
Redundancy
Multi-AZ and multi-region deployments.

Setting up VPC for high availability
In this section, we describe a common VPC setup for some of the high-availability
approaches discussed later in this chapter.

Before setting up your VPC, you will need to carefully select your primary site and a DR
site. Leverage AWS's global presence to select the best regions and availability zones to
match your overall business objectives. The choice of a primary site is usually the closest
region to the location of a majority of your customers, and the DR site could be in the next
closest region, or a significantly distant one depending on your objectives. Next, we need to
set up the network topology, which essentially includes setting up the VPC and the
appropriate subnets. The public-facing servers are configured in a public subnet, whereas
the database servers and other application servers hosting services like the directory
services will normally reside in the private subnets.

Designing for and Implementing High Availability Chapter 5

[180]

Ensure that you choose different sets of IP addresses across the different regions for the
multiregion deployment, for example, 10.0.0.0/16 for the primary region and
192.168.0.0/16 for the secondary region to avoid any IP addressing conflicts when these
regions are connected via a VPN tunnel. Appropriate routing tables and ACLs will also
need to be defined to ensure that traffic can traverse between them. Cross-VPC connectivity
is required so that data transfer can happen between the VPCs (say, from the private
subnets in one region to the other region). The secure VPN tunnels are basically IPSec
tunnels powered by VPN appliances—a primary and a secondary tunnel should be defined
(in case, the primary IPSec tunnel fails).

ELB is configured in the primary region to route traffic across multiple availability zones.
However, you need not necessarily commission ELB for your secondary site at this time.
Even though the ELB is not particularly expensive, this will help you avoid unnecessary
costs for the ELB in your DR or secondary site. Gateway servers and NAT will need to be
configured as they act as gatekeepers for all inbound and outbound internet access.
Gateway servers are defined in the public subnet with appropriate licenses and keys to
access your servers in the private subnet for server administration purposes. NAT is
required for servers located in the private subnet to access the internet and is typically used
for automatic patch updates.

Elastic load balancing and Amazon Route 53 are critical infrastructure components for
scalable and highly available applications; we discuss these services in the next section.

Using ELB and Route 53 for high availability
In this section, we describe different levels of availability, and the role ELBs and Route 53
play from an availability perspective.

Instance availability
The guideline here is to never run a single instance in a production environment. The
simplest approach to improving availability is to spin up multiple EC2 instances and stick
an ELB in front of them. The incoming request load is shared by all the instances behind the
load balancer.

ELBs use a least connections algorithm to spread requests across healthy instances. Least
connections target instances with the fewest outstanding requests and adjust to the request
response times of an instance. For example, slower response times from an instance will
result in that machine receiving fewer requests.

Designing for and Implementing High Availability Chapter 5

[181]

Even though it is not recommended to have different instance sizes, within a specific tier,
between or within the AZs, the ELB will adjust for the number of requests it sends to
smaller or larger instances based on response times. In addition, ELBs use cross-zone load
balancing to distribute traffic across all healthy instances regardless of AZs. Hence, ELBs
help balance the request load even if there are unequal number of instances in different AZs
at any given time (perhaps due to a failed instance in one of the AZs). Note that there is no
bandwidth charge for cross-zone traffic (if you are using ELB).

Auto Scaling for increased availability and reliability
If the AZ goes down, then new instances are spun up in a different AZ, if necessary. As
soon as the first AZ comes back to life, auto scaling will try to launch the instances there
and try rebalancing the load appropriately. This is the only time the number of instances
can go above max capacity specified (for a short amount of time). As soon as a certain
amount of capacity is available in AZ 1, it will start terminating the instances in AZ 2.

Instances that fail can be seamlessly replaced using auto-scaling while other instances
continue to operate. Although auto-replacement of instances works really well, storing
application state or caching locally on your instances can lead to problems hard to detect.

Health checks are performed periodically and the instances are marked as unhealthy or
healthy. Unhealthy instances are terminated and replaced (if new number of instances <
minimum or < desired capacity). The EC2 instance status is unhealthy when the instance
state is not "running" or the system health check is "impaired". Instances are determined to
be unhealthy when ELB health check results in "OutOfService" (or the EC2 health check
fails). You can also define your own health checks to mark individual instances as
"unhealthy". You can also integrate instance statuses with an external monitoring systems.

TCP- and / or HTTP-based heartbeats can be created for this purpose. However, it is
important to consider the depth and accuracy of your health checks because deep-in-the-
stack health checks can lead to situations where you can get excessive number of false
positives and false negatives in your results. It is worthwhile to approach the
implementation of health checks, iteratively, to arrive at the right set that meet your goals.

Designing for and Implementing High Availability Chapter 5

[182]

Zonal Availability or Availability Zone Redundancy
Availability Zones are distinct geographical locations engineered to be insulated from
failures in other zones. It is critically important from a HA perspective to run your
application stack in more than one zone. In addition, avoid dependencies across the zones
as far as possible. For sites with very high request loads, a 3-zone configuration may be the
preferred configuration to handle zone-level failures. In this situation, if one zone goes
down, then other two AZs can ensure continuing high availability and uninterrupted
customer experience.

In the event of a zone failure in a multi-AZ configuration, there are several challenges. The
DNS record will contain multiple IP addresses and DNS round robin can be used to balance
traffic between the availability zones. Using multiple AZs can result in traffic imbalances
between AZs due to clients caching DNS records. However, ELBs can help reduce the
impact of this caching.

Region availability or regional redundancy
Elastic Load Balancing and Amazon Route 53 have been integrated to support a single
application across multiple regions. Route 53 is AWS’s highly available scalable DNS and
health checking service. Route 53 supports high availability architectures by health
checking load balancer nodes and re-routing traffic to avoid the failed nodes as they
support implementation of multi-region deployments. In addition, Route 53 uses Latency
Based Routing to route your customers to the end-point that has the least latency. If
multiple primary sites are implemented with appropriate health checks configured then
failures result in traffic being shifted away from that site to an alternate region.

Region failures can present several challenges as a result of rapidly shifting traffic (similar
to the case of zone failures). These can include Auto Scaling, time required for instance
startup, and cache fill time (as we may need to fault to our data sources, initially). Another
difficulty usually arises from the lack of information or clarity on what constitutes the
minimal or critical stack required to keep the site functioning as normally as possible. Any
or all services will need to be considered as critical in these circumstances.

The health checks are essentially automated requests sent over the internet to your
application to verify that your application is reachable, available, and functional. This can
include both your EC2 instances and your application. As answers are returned only for the
resources that are healthy and reachable from the outside world the end users can be routed
away from a failed application. Amazon Route 53 health checks are conducted from within
each AWS region to check whether your application is reachable from that location.

Designing for and Implementing High Availability Chapter 5

[183]

DNS failover is designed to be entirely automatic. After you have set up your DNS records
and health checks, no further manual intervention is required for failover. Typically, it takes
about 2-3 minutes from the time of the failure to the point where traffic is routed to an
alternate location. Compare this to the traditional long drawn out process where an
operator receives an alarm, manually configures the DNS update, and waits for the DNS
changes to propagate.

Depending on the availability objectives there is an additional strategy (using Route 53)
 that you may want to consider for your application. For example, you can create a backup
static site to maintain a "presence" for your end customers while your primary (dynamic)
site is down. In the normal course, Route 53 will point to your dynamic site and maintain
health checks for it. You will also need to configure Route 53 to point to S3 storage where
your static site is residing. If your primary site goes down then traffic can be diverted to the
static site (while you work to restore your primary site). You can also combine this static
backup site strategy with a multiple region deployment.

Setting up high availability for application and
data layers
In this section, we will discuss approaches for implementing high availability in the
application and data tiers in the application architecture.

In the application layer, we can do a cold start from pre-configured images or a warm start
from scaled down instances for the web servers and application servers in a secondary
region. By leveraging auto-scaling we can quickly ramp up these servers to handle full
production loads. In this configuration you would deploy the web servers and application
servers across multiple AZs (in the primary region) and the standby servers in a separate,
secondary region. The standby servers need not be launched till you actually need them.
However, you should keep the preconfigured AMIs for these servers ready-to-launch in
your secondary region.

Designing for and Implementing High Availability Chapter 5

[184]

The data layer can comprise of SQL databases, NoSQL databases, caches, and so on. These
can be AWS managed services such as RDS, DynamoDB, and S3, or your own SQL and
NoSQL databases like Oracle, SQL Server, or MongoDB running on EC2 instances. AWS
services come with HA built-in while using self-managed database products running on
EC2 instances offers a do-it-yourself option. It can be advantageous to use AWS services, if
you want to avoid taking on database administration responsibilities. For example, with the
increasing sizes of your databases you might choose to shard your databases may be easy
for you to do. However, re-sharding your databases while accepting live traffic can be a
complex undertaking and present availability risks. Choosing to use AWS DynamoDB
service in such situations, offloads the work to AWS thereby resulting in higher availability
out-of-the-box.

Next, we discuss some data replication options.

DynamoDB automatically replicates your data across several AZs to provide higher levels
of data durability and availability. In addition, you can use data pipelines to copy your data
from one region to another. DynamoDB streams functionality that can be leveraged to
replicate to another DynamoDB in a different region. For very high volumes, low-latency
Kinesis services can also be used for this replication across multiple regions distributed all
over the world.

You can also enable the multi-AZ setting for the AWS RDS service to ensure that AWS
replicates your data to a different AZ within the same region. In the case of Amazon S3, the
S3 bucket contents can be copied to a different bucket and the failover managed on the
client side. Depending on the volume of data, always think in terms of multiple machines,
multiple threads, and multiple parts to significantly reduce the time it takes to upload data
to S3 buckets.

While using your own database (running on EC2 instances), use your database-specific
high-availability features for within and cross-region database deployments. For example, if
you can leverage your databases' replication features for synchronous and asynchronous
replication across the nodes. If the volume of data is high, then you can also upload your
data to Amazon S3 and restore the data to your database instance on AWS. You can also
replicate your non-RDS databases (on-premise or on AWS) to AWS RDS databases. You
will typically define two nodes in the primary region with synchronous replication and a
third node in the secondary region with asynchronous replication. NoSQL databases, such
as MongoDB and Cassandra, have their own asynchronous replication features that can be
leveraged for replication to a different region.

Designing for and Implementing High Availability Chapter 5

[185]

In addition, you can create Read Replicas for your databases in other AZs and regions. In
this case, if your master database fails followed by a failure of your secondary database,
then one of the read replicas can be promoted to being the master. In hybrid architectures
where you need to replicate between on-premise and AWS data sources, you can do so
through a VPN connection between your data center and AWS. In case of any connectivity
issues, you can also temporarily store pending data updates in SQS and process them when
the connectivity is restored.

Usually, data is actively replicated to the secondary region while all other servers like the
web servers and application servers are maintained in a cold state to control costs.
However, in cases of high availability for web-scale or mission critical applications, you can
also choose to deploy your servers in active-active configuration across multiple regions.

Implementing high availability in the application
In this section, we will discuss a few design principles to use in your application from a
high availability perspective. We briefly discuss using highly available AWS services to
implement common features in mobile and Internet of Things (IoT) applications. Finally,
we also cover running packaged applications on AWS cloud.

Designing your application services to be stateless and implementing a microservices-
oriented architecture can help the overall availability of your application. In such
architectures, if a service fails, then that failure is contained or isolated to that particular
service while the rest of your application services continue to serve your customers. This
approach can lead to an acceptable degraded experience rather than outright failures or
worse. You should also store user or session information in a central location such as the
AWS ElastiCache and spread the information across multiple AZs for high availability.
Another design principle is to rigorously implement exception handling in your application
code, and each of your services, to ensure graceful exit in case of failures.

Most mobile applications share common features including user authentication and
authorization, data synchronization across devices, user behavior analytics, retention
tracking, storing, sharing, and delivering media globally, sending push notifications,
storing shared data, streaming real-time data, and so on. There are a host of highly available
AWS services that can be used to implement such mobile application functionality. For
example, you can use Amazon Cognito to authenticate users, Amazon Mobile Analytics to
analyze user behavior and track retention, Amazon SNS for push notifications, and Amazon
Kinesis for streaming real-time data. In addition, other AWS services such as S3,
DynamoDB, and IAM can also be effectively used to complete most mobile application
scenarios.

Designing for and Implementing High Availability Chapter 5

[186]

Similar to mobile applications, for IoT applications, you can use the same highly available
AWS services to implement common functionality, such as device analytics and device
messaging / notifications. You can also leverage Amazon Kinesis to ingest data from
hundreds of thousands sensors that are continuously generating massive quantities of data.

Aside from your own custom applications, you can also run packaged applications such as
SAP on AWS. In such cases, you can leverage some of the same AWS features and
approaches discussed in this chapter for high availability. These would typically include
replicated standby systems, multi-AZ and multi-region deployments, hybrid architectures
spanning your own data center and AWS cloud (connected via VPN or AWS Direct
Connect service), and so on. For more details, refer to the specific package guides to achieve
high availability on AWS cloud.

Using AWS for disaster recovery
In this section, we discuss how AWS can be leveraged for your on-premise and cloud-based
application’s disaster recovery. We present several different DR strategies that may be
suitable for different types of applications, budgets, and situations.

Disaster recovery scenarios typically include hardware or software failures, network
outages, power outages, natural disasters like floods, or other such significant events that
directly impact a company’s ability to continue with their business. Traditionally, there
have been two key metrics driving the implementation of disaster recovery
strategies—Recovery Time Objective (RTO) and Recovery Point Objective.

Recovery Time Objective (RTO) is the time it takes to restore the business
process (after a disaster) to its service level.

Recovery Point Objective (RPO) is the acceptable amount of data loss
measured in time units.

Depending on your RTO and RPO objectives, there are several architectural strategies
available to recover from disasters. The main ones in the order of reducing RTO/RPO (but
with higher associated costs) are described in the following sections.

Designing for and Implementing High Availability Chapter 5

[187]

Using a backup and restore DR strategy
Backup and restore is the simplest and the most common option used in traditional data
centers. The process of taking tape-based backups and doing restores from tapes is familiar
to most organizations. However, there are some simpler and often faster options available
as AWS services. Amazon S3 is an ideal storage medium for quick backups and restores for
your cloud and on-premise applications. Another storage option is to use Amazon Glacier
for your longer term backups.

There are several options available for hybrid architectures where your data center extends
into the cloud. You can use Direct Connect facility to set up a high throughput and low-
latency connection between your data center and AWS cloud for your backups. In case your
data volumes are on a terabyte scale, then Amazon also provides a facility where you can
ship your data on portable storage media and Amazon will use their high-speed internal
network to load it on S3 for you. This is often a more economical option to load your data
than upgrading your network connections and transferring massive volumes of data over
the internet. Another AWS option is to use the AWS Storage Gateway, an on-premise
software appliance, to store your data on AWS S3 or AWS Glacier storage. In cases of
disaster, you can choose to launch your workloads within the AWS environment or your
own data center environment.

Using a Pilot Light architecture for DR
As the name suggests, in this architecture, you set up data mirroring/replication of your on-
premise or cloud databases. In addition, you create images of your critical on-premise or
cloud servers. These images would typically include your web servers and application
servers. In order to avoid incurring unnecessary running costs, these instances are launched
only when they are needed. In the event of a disaster, the web servers and application
servers can be quickly launched from the preconfigured images.

Using a warm standby architecture for DR
This option is similar to the Pilot Light architecture; however in this case, we run a scaled-
down version of the production environment. In the event of a disaster, we simply divert
the traffic to this site and rapidly scale up to the full-blown production environment.

Designing for and Implementing High Availability Chapter 5

[188]

Using a Multi-Site architecture for DR
In a multi-site architecture, there are multiple production environments running in active-
active configuration on AWS only or a hybrid of on-premise and AWS cloud infrastructure.
In cases of disaster, the traffic is routed to the already running alternate sites. You can use
the weighted routing feature of Route 53 for this purpose. You will need to ensure sufficient
capacity at each site, or a rapid scale up of capacity as provided by the auto-scaling feature
on AWS, to avoid poor customer experience or cascading failures from occurring. The costs
associated with this option depend on how much production traffic is handled by AWS
during normal operations and at peak loads.

In order to meet the RTO objectives, the infrastructure is fully automated. AWS
CloudFormation can be used for this purpose. However, it is recommended to have an
engineer closely monitor the recovery process in case rollbacks are required as result of any
failures.

Testing disaster recovery strategy
It is imperative to thoroughly test your recovery strategy end to end to ensure that it works
and to iron out any kinks in the processes. However, testing for failures is hard, especially
for sites or applications with very high request loads or complex functionality. Such web-
scale applications usually comprise massive and rapidly changing datasets, complex
interactions and request patterns, asynchronous requests, and a high degree of concurrency.
Simulating complete and partial failures in such scenarios is a big challenge. At the same
time, it is even more critical to regularly inject failures into such applications, under well-
controlled circumstances, to ensure high availability for your end customers.

It is also important to be able to simulate increased latency or failed service calls. One of the
biggest challenges in terms of testing services-related failures is that many times the
services owners do not know all the dependencies or the overall impact of a particular
service failure. In addition, such dependencies are in a constant flux. In these circumstances,
it is extremely challenging to test service failures in a live environment at scale. However, a
well thought out approach that identifies the critical services in your application takes into
consideration prior service outages and having a good understanding of dependency
interactions or implementing dynamic tracing of dependencies, can help you execute
service failure test cases.

Designing for and Implementing High Availability Chapter 5

[189]

Simulating availability zone and/or region failures need to be executed with care, as you
cannot shutdown an entire availability zone or region. However, you can shut down the
components in an AZ via the console or use CloudFormation to shut down your resources
at a region level. After the shutdown of the resources in the AZs of your primary region,
you can launch your instances in the secondary region (from the AMIs) to test the DR site’s
ability to take over. Another way to simulate region-level failures is to change the load
balancer security group settings to block traffic. In this case, the Route 53 health checks will
start failing and the failover strategy can be exercised.

For a deeper understanding of testing your deployment against failures,
refer to Netflix's site for Chaos Monkey (responsible for randomly
terminating instances in production to test resiliency to instance failures).

Setting up high availability
This section introduces configuring AWS infrastructure to support high availability (HA) to
our application. Amazon's high-level services are designed for high availability and fault
tolerance like the Elastic Load Balancer (ELB),Simple Storage Service (S3), Simple Queue
Service (SQS), Simple Notification Service(SNS), Relational Database Service(RDS), Route 53
a dynamic DNS service, and Cloudwatch. The infrastructure services, such as Elastic Cloud
Compute (EC2) and Elastic Block Storage (EBS), can leverage Availability Zones, Elastic IP
addresses and snapshots to design highly available and fault tolerant applications and
deployment environments. Remember that hosting an application on the cloud does not
make it fault tolerant or highly available. We need to architect for high availability.

AWS high availability architecture
Let us start by designing a generic high-availability architecture for an Amazon region.
High availability can be architected in many different ways depending on the services used
and the requirements. Here, we present a very generic architecture. The key to achieving
high availability is to avoid single point of failures (SPOF) or application failures resulting
from any one of the components or services fails. This implies that we have to account for
all the Amazon services that can fail in a region; in our case, these are as follows:

Availability zone (AZ)
EC2 instances (EC2)

Designing for and Implementing High Availability Chapter 5

[190]

Elastic load balancer (ELB)
Relational Database Service (RDS)

Out of these, ELB and RDS are already designed for high availability and just need to be
configured to support high availability as per the architecture. The application is hosted in
the US West Region, and the architecture is designed to handle failures within a Region and
not across regions.

Availability Zones: An Availability Zone is equivalent to a data center. They are
in distinct physical locations and are engineered to isolate failure from each other.
The application is hosted in more than one availability zone to isolate them from
these failures. The decision on how many Availability Zones to use for an
application depends on how critical the application is and the costs involved.
Using multiple AZs removes the SPOF for applications using a single AZ.

Designing for and Implementing High Availability Chapter 5

[191]

Elastic Load Balancer: All the traffic is routed via the elastic load balancer to the
applications. This piece of infrastructure is fault tolerant by design. ELB needs to
be configured for routing traffic to the application hosted in different AZs. In
addition, the ELB also performs health check on all the EC2 instances registered
with it and only routes traffic to healthy EC2 instances. AWS replaces an
unhealthy ELB; hence, the SPOF at the load balancer tier is no longer a problem.
EC2 Instances: An EC2 instance is the most vulnerable component in the chain. It
is the most complex in terms of the deployment of your software application and
the supporting software stack. Any failure in the software stack or the application
can potentially render the application to be unavailable. To cover this, an Auto
Scaling group (ASG) is used that monitors and launches EC2 instances based on
the configuration of alarms and the configured number of maximum, minimum,
and desired EC2 instances per availability zone. This addresses the SPOF at web
server/application tier.
Relation Database Service: The last in the chain is the database. The RDS service
provides high availability and failover using Multi-AZ deployments. The RDS
creates a database instance in two AZs with one of them designated as the master
and the other a standby replica or slave instance. The master and standby
databases are synchronized via synchronous data replication. All the EC2
instances write to the database via a FQDN or an endpoint. Behind the scenes, the
RDS service routes the writes to the current master database instance. With
Multi-AZ, you can’t access the inactive secondary database until the primary fails.
If the primary RDS instance fails, the DNS CNAME record is updated to point to
the new master. If the standby fails, a new instance is launched and instantiated
from the primary as the new standby. Once failover is detected, it takes less than
a minute to switch to the slave RDS instance. Multi-AZ deployment is designed
for 99.95% availability. In addition, RDS can be configured to snapshot the
database at regular intervals that helps during disaster recovery. This addresses
the SPOF in the database tier.
Simple Storage Service (S3): S3 is a highly available service in order to store
static assets. Amazon S3 is designed for 99.99% availability. All the files uploaded
to the application should be stored in S3 so that even if the EC2 instances fail, the
uploaded file is not lost, and another EC2 instance can process the workload, if
required. It is a good practice to store all the static assets such as images and
scripts of an application to S3, as it takes the load off your EC2 instances.

Designing for and Implementing High Availability Chapter 5

[192]

Virtual Private Cloud (VPC): Amazon automatically creates a VPC in a region
for all the accounts created after 2013-03-18. By default, subnets are created for all
the availability zones in a given region. You can have up to 200 subnets per
region that can be increased further upon request. For enabling high availability,
the previously configured AWS services setup needs to adjusted to support high
availability.
HA support for Auto Scaling groups.

To launch the EC2 application instances in different availability zones, the subnets within
the Auto Scaling group need to be reconfigured (as subnets are associated with specific
Availability Zones).

We can follow the steps listed here to launch the EC2 application:

From the EC2 dashboard navigation pane, click on Auto Scaling Groups. Select1.
the A1EcommerceASG Auto Scaling group and then select the Edit option in the
Actions drop-down menu or click on the Edit button in the Details tab.

The second Availability Zone selected is us-west-2c where the new EC2 instances2.
will be launched. Select the subnet associated with the us-west-2c Availability
Zone from the Subnet(s) dropdown list. This step configures the ASG for high
availability.

Designing for and Implementing High Availability Chapter 5

[193]

For high availability, the minimum number of instances running in Auto
Scaling group needs to be two, that is, one EC2 instance per availability zone.
Modify the Desired and the Min number of instances to 2 and the Max to a
number greater or equal to 4.

Click on the Save button to save these changes:

As soon as you save the changes, the Auto Scaling group will start a new EC23.
instance in the us-west-2c Availability Zone as shown:

Designing for and Implementing High Availability Chapter 5

[194]

HA support for Elastic Load Balancer
The next step is configuring the ELB to route the traffic to EC2 instances in the added
Availability Zone that is us-west-2c:

From the EC2 dashboard navigation pane, click on Load Balancers: 1.

Designing for and Implementing High Availability Chapter 5

[195]

Select the a1electronicsecommerce-elb load balancer and then click on the Edit2.
Availability Zones button in the Instances tab:

Designing for and Implementing High Availability Chapter 5

[196]

Click on the us-west-2c Availability Zone to add it to the ELB and click on the3.
Save button:

You should see the following screen. The ELB starts routing the traffic to the EC24.
instances in the us-west-2c zone:

Designing for and Implementing High Availability Chapter 5

[197]

HA support for the Relational Database Service
As explained, RDS provides high availability via Multi-AZ. To set up Multi-AZ, RDS needs
to be configured for two things, the availability zone where the slave RDS instance will be
launched and instantiated and enable the Multi-AZ option for the current RDS service:

From the RDS dashboard navigation pane, click on Subnet Groups. Select1.
default and click on the Edit button:

The two Availability Zones as per the architecture diagram are us-west-2a and2.
us-west-2c. Hence, click on the Remove button against the us-west-2b AZ. Click
on the Edit button:

Designing for and Implementing High Availability Chapter 5

[198]

You should see the following screen. Click on the default hyperlink to the view3.
subnet details:

Make sure that the two AZs are correctly listed as shown:4.

From the RDS dashboard navigation pane, click on Instances. Select the5.
a1ecommerce database instance and click on Modify from the Instance actions
drop-down menu:

Designing for and Implementing High Availability Chapter 5

[199]

Select Yes from Multi A-Z Deployment drop-down menu. This will instantiate6.
slave database instance in the us-west-2c Availability Zone:

Designing for and Implementing High Availability Chapter 5

[200]

Scroll down the page and click on the Continue button:7.

Designing for and Implementing High Availability Chapter 5

[201]

Make sure that you check the Apply Immediately checkbox; if not, your changes8.
will be scheduled for the next maintenance cycle. Click on the Modify DB
Instance button:

At this stage, you will see the Status as modifying:9.

Designing for and Implementing High Availability Chapter 5

[202]

After a few minutes, you should see the status as available:10.

Summary
In this chapter, we reviewed some of the strategies you can follow in order to achieve high
availability in your cloud application. We emphasized the importance both designing your
application architecture for availability and using AWS infrastructural services to get the
best results. We followed this up with a section on setting up high availability in our sample
application.

In the next chapter, we will shift our focus to strategies to design and implement security
for your cloud application. We will review some approaches for application security using
AWS services. We will also include a hands-on section that will walk you through the
process of implementing security in our sample application.

6
Designing for and Implementing

Security
In this chapter, we will introduce some key design principles and approaches to achieving
security in your applications deployed on the AWS cloud. As an enterprise, or a start-up,
you want to ensure your mission critical applications and data are secure while serving
your customers. The approaches in this chapter will address security across the layers of
your application architecture including security aspects of key infrastructural components.
In order to address security requirements, we will use several AWS services, including
IAM, CloudTrail, and CloudWatch. Additionally, we will explore AWS Edge services such
as CloudFront, Amazon Certificate Manager (ACM), and AWS WAF from a security
perspective.

Finally, we will also show you how to implement security for our sample application.

In this chapter, we shall learn about:

Defining security objectives
Understanding security responsibilities
Best practices in implementing AWS security
Implementing Identity Lifecycle Management
Tracking AWS API activity using CloudTrail
Logging for security analysis
Using third-party security solutions
Reviewing and auditing security configuration
Setting up security using IAM roles, the Key Management Service, and
configuring SSL
Securing data at rest, Amazon S3 and RDS

Designing for and Implementing Security Chapter 6

[204]

Defining security objectives
Security on the cloud should be a primary area of focus for you because it is a top-of-the-
mind issue for your customers. You will need to robustly address these concerns because of
the following:

Customer trust: Customers come to our site expecting us to protect their
information and keep it safe. We need to live up to that trust.
Regulatory compliance: Increasingly, various regulations and compliance
requirements are putting security front and center, especially for cloud-based
data storage and applications. And data privacy is a huge part of that.

In order to protect your assets and data on the cloud, you will need to define an
Information Security Management System (ISMS), and implement security policies and
processes for your organization. While larger companies may have well-defined security
controls already defined for their on-premises environments, start-up organizations may be
starting from scratch. However, in all cases, your customers will demand to understand
your security model and require strong assurances before they use your cloud-based
applications; especially in cases of SaaS or multi-tenanted applications, it can be extremely
challenging to collate security-related documentation to meet varying demands,
specifications, and the standards of your customers.

There are several information security standards available, for example, the ISO 27000
family of standards can help you define your ISMS. Selecting a control framework can help
you cover all bases and measure success against a set of well-defined metrics. Mapping
your implementation against the control framework allows you to produce evidence of
controls and due diligence to your customers. In addition, you should budget for the
expenses and effort required to conduct regular vulnerability assessments and audits. In
some cases, be prepared to share these audit reports with your major customers.

In this chapter, we will focus on achieving security objectives for your cloud applications
that are also performant, rather than having to choose between being secure and being
performant. Additionally, implementation costs can vary widely based on security
mechanisms chosen; hence, make your solution choices based on your business needs and
risks. As your business evolves, revisit your security plan and make necessary adjustments
to better meet your business objectives.

Finally, ensure you build a lot of agility into your processes to keep up with and take
advantage of new security-related features and services released frequently by AWS.

Designing for and Implementing Security Chapter 6

[205]

Understanding the security responsibilities
AWS security operates on a shared responsibility model comprising of parts to be managed
by you and parts managed by AWS. This model consists of three parts—infrastructure
security, application security, and services security:

Infrastructure security: AWS has a whole host of industry recognized
compliance certifications against various security-centric standards such as
Payment Card Industry (PCI), NIST, SSAE, and ISO, as well as PCI DSS 2.0 Level
1, ISO 9001, 27001, 27017, 27018, and so on.
Application security: Services that support security implementation—such as
IAM policies, origin protection, ACM integration, keys/certificate rotation, and so
on—in applications makes them more secure without sacrificing performance.
Services security: This includes a set of things that Amazon provides by default
and what you can do with them to make your applications more secure. For
example, the security options and features available on CloudFront across a
growing number of edge locations and regions across cities, countries, and
continents include a standardized implementation of security features. This
ensures that you get a consistent security footprint with CloudFront everywhere.
Additionally, AWS provides various features and options such as SSL/TLS
options, private content protection mechanisms, origin access identities to protect
the origin, a Web Application Firewall (WAF) to protect against malicious bots,
CloudTrail to track the usage of AWS services, and so on.

Essentially, AWS is responsible for managing the security for the virtualization layer, the
compute, storage, and network infrastructure, and the global infrastructure (regions, AZs,
and endpoints) and physical security. In addition, AWS is responsible for the operating
system or the platform layer for EC2 or other infrastructure instances for AWS container
services (Amazon RDS, Amazon EMR, and so on). AWS also manages the underlying
service components and the operating system for AWS abstracted services (Amazon S3,
DynamoDB, SQS, SES, and so on).

Strict controls and procedures are followed by AWS engineers, operations, and others in
terms of who can access the edge infrastructure or systems. For maintenance activity,
bastion hosts act as a centralized point that the engineers will log in to, and they are the
only point from which the edge hosts can be accessed from. Additionally, two-factor
authentication is required to access these bastion hosts, and end-to-end encryption is also
implemented. Constant testing and probing is done to ensure that the security best practices
are being followed.

Designing for and Implementing Security Chapter 6

[206]

In subsequent sections, we will present some practical ways to make your content more
secure. Hence, we will keep our focus on your responsibilities rather than Amazon's. This
includes implementing security controls for users and roles, policies and configuration,
applications and data (storage, in transit, and at rest), firewalls, network configuration, and
the operating system.

In the next section, we will discuss the basics and best practices of a minimally viable
approach—a good starting point to implement some of the security controls that can mature
into a comprehensive security strategy over time.

Best practices in implementing AWS
security
Typically, you will start with basic security measures in place and then rapidly iterate from
there to improve your overall cloud security model and/or implementation. Before
designing any of your security solutions, you will need to identify and then classify the
assets you need to protect into high/medium/low risk categories. This is often a non-trivial
undertaking in large enterprises. Asset data is typically entered manually in most
organizations, and it relies heavily on human accuracy. Capturing this data
programmatically results in better efficiency and accuracy. Integrate AWS, APIs with your
existing enterprise asset management systems, and include your CloudFormation templates
or scripts as artifacts in your configuration management database to get a better handle on
your cloud assets.

In order to get off the ground faster, take full advantage of everything that is provided out
of the box by AWS, whether it is security groups, network ACLs, or the ability to turn
CloudTrail on for all your AWS accounts. In addition, we typically implement
Infrastructure as Code (IAC) on AWS Cloud and include security in the whole deployment
process. For example, when code is deployed on a new EC2 instance, the OS hardening
should happen as a part of the build pipeline.

The AWS Identity and Access Management (IAM) service is central to implementing
security for your applications on AWS cloud. Some of the main activities and best practices
for AWS IAM are listed below:

Use IAM to create users, groups, and roles, and to assign appropriate
permissions.

Designing for and Implementing Security Chapter 6

[207]

Manage permissions using groups. You assign permissions to groups and then
assign individuals to them. While assigning permissions to groups, always grant
the least privilege. AWS provides several policy templates for each of their
services. Use these policy templates, as they are a great starting point for setting
up the permissions for AWS services. For example, you can quickly set up
permissions for a group that has read-only access to S3 buckets.
In your ISMS, you will need to define a set of roles and responsibilities and assign
specific owners to particular security-related tasks and controls. Depending on
your choices, these owners may be a combination of people within your
organization, or AWS partners, third-party service providers, and vendors. Map
each of these owners to appropriate AWS IAM roles.
Use IAM roles to share access. Never share your credentials for giving access,
temporarily or otherwise. Restrict privileged access further by using IAM
conditions, and reduce or eliminate the use of root credentials.
Use IAM roles for getting your access keys to various EC2 instances. This eases
rotation of keys as the new set keys can be accessed via a web service call in your
application.
Enable multi-factor authentication for privileged users. For example, users that
have permissions to terminate instances.
Rotate security credentials regularly. Rotate both your passwords and access
keys.

There are a few other security-related best practices that are commonly implemented using
IAM. For example, you can configure the rules to support your company's password policy.
It is advisable to configure a strong password policy for use on the cloud. Other best
practices relate to using the AWS Security Token Service to provide just-in-time access for a
specific duration to complete a task.

For more details on AWS Security Token Service, refer to: http:/ /docs.
aws.amazon. com/ STS/ latest/ UsingSTS/ STSPermission. html.

http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/STSPermission.html

Designing for and Implementing Security Chapter 6

[208]

Security considerations while using CloudFront
In this section, we will explain the security-related aspects of using CloudFront, as many
cloud-based applications use it. In CloudFront, the efficient delivery of dynamic content
(not cacheable) is achieved by proxying data to the origin and back over a highly-optimized
network. When an end-user makes a request for content, the user is automatically routed to
the nearest edge location. A high-quality, consistent connection is maintained between the
edge location back to the origin, and the connection is kept alive over the AWS backbone.
So, even when you are not caching data, the data going out from your application or
coming in from the user can be performant and secure.

CloudFront protects data in transit by delivering content over HTTPS. HTTPS authenticates
the viewers to CloudFront and also the origin to CloudFront. The process starts by
terminating SSL at the edge location. The communication between the edge location and the
user is secured using a SSL certificate. Aiming towards a goal of ensuring secure content
delivery, more and more developers are shifting to a complete HTTPS model that covers
100% of your site's contents delivered end to end over HTTPS. CloudFront enables
advanced SSL features automatically.

Some of the key security-related CloudFront features include:

High security ciphers: CloudFront uses strong ciphers and cipher suites that are
optimized for performance and security.
Perfect forward secrecy: Enables perfect forward secrecy so that even if your
certificate is compromised and someone gains access to your private key, they
will still not be able to decrypt data collected in the past.
Online Certificate Status Protocol (OCSP stapling): When the client sends a TLS
client connection or "hello" request, CloudFront requests the certificate status
from an OCSP responder. The OCSP responder sends the certificate status and
CloudFront completes a TLS handshake with the client.
TCP fast open: A TCP cookie returned to the client upon establishing the TCP
session. The client sends the cookie the next time it connects to the server, along
with the client "hello" request. CloudFront supports this for TLS connections
only.
Validate origin certificate: CloudFront validates SSL certificates to the origin, for
example, the origin domain name must match the subject name on the certificate;
the certificate must be issued by a trusted CA, and the certificate date must be
within the expiration window.

Designing for and Implementing Security Chapter 6

[209]

Session tickets: We have to do two round trips for the client to establish a TLS
connection after the TCP connection (so it is a total of three round trips). Round
trips are expensive and add a fair bit of latency. Session tickets allow clients to
resume a session. CloudFront sends encrypted session data to the client and the
client does an abbreviated SSL handshake.

You can create a site that can deliver both HTTP and HTTPS content; that is, you can use a
single CloudFront domain name for both HTTP and HTTPS content. You can choose
between enforcing Strict HTTPS, where HTTP requests are failed, or implement an HTTP to
HTTPS redirect.

Additionally, CloudFront offers three options for TLS:

Default CloudFront SSL domain name: This option means using a non-human
friendly domain name where the CloudFront certificate is shared across
customers.
SNI-enabled custom SSL: Allows you to use your own SSL certificate and relies
on the SNI extension of the TLS protocol (for the right certificate to be selected for
a specific customer). You can have your own domain name and certificate.
However, some older browsers/OSs do not support the SNI extension.
Dedicated IP custom SSL: In this option, you can use your own SSL certificate.
CloudFront allocates dedicated IP addresses to serve SSL content. It is supported
by all browsers/OSs, however, there is an extra charge for using this option.

CloudFront and ACM integration
AWS Certificate Manager (ACM) makes it easy to provision, manage, deploy, and renew
SSL/TLS certificates on the AWS platform.

ACM makes it easy to procure new certificate (directly from the CloudFront console). It
enables extremely fast procurement turnaround times (in minutes), and the certificate is
immediately available for use in CloudFront (and ELB). The SNI support of custom
certificates generated from ACM comes for free and provides a hassle-free, automatic
certificate renewal process.

There are two models for SSL termination that can be implemented:

Half bridge termination: The connection between the edge location and the end
user is secured. Connection back to the origin is not secured with HTTPS. It
results in better performance as it uses HTTP connections to the origin.

Designing for and Implementing Security Chapter 6

[210]

Full bridge termination: The entire access chain is secured. The first connection is
terminated at the edge location and a new HTTPS connection established to the
origin. This option is usually preferred when collecting data from a user or
showing personalized content to the user.

Understanding access control options
There are a variety of access control options available if you want to deliver content only to
selected customers, allow access to content only until a certain time, or allow only certain IP
addresses to access content. For example, if your site is under development then you can
make CloudFront accessible only from your internal IP addresses.

There are two options for controlling access controls to private content:

Signed URLs: Adds the signature to the query string in the URL. Hence, your
URL changes. This option is typically used when you want to restrict access to
individual files and/or the users are using a client that doesn't support cookies.
Signed cookies: Adds the signature to a cookie. Hence, your URL does not
change. This option is typically used when you want to restrict access to multiple
files and/or you don’t want to change URLs.

Web Application Firewall
Serving unnecessary requests costs money. For example, blocking bad bots dynamically is a
typical use case for using AWS WAF. You will need to create an IPSet containing a list of
blocked IP addresses and a rule that blocks requests from these IPs. You will define a web
ACL which allows requests by default and contains our rule to exclude blocked IPs.
Additionally, you will need define a mechanism to detect bad bots and add their IP
addresses to IPSet.

You can use robots.txt to specify which areas of your site or web app should not be
scraped and to ensure there are some links pointing to non-scrapable content. Bad bots
(ignoring your robots.txt) will request the hidden link and the trigger script will detect
the source IP of the request, request a change token, and add the source IP to IPSet blacklist.
The web ACL will block subsequent requests from that source.

References to preconfigured rules for blocking IP addresses that exceed
request limits, blocking IP addresses that submit bad requests, and so on,
are available at: https:/ / aws. amazon. com/ waf/ preconfiguredrules/ .

https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/
https://aws.amazon.com/waf/preconfiguredrules/

Designing for and Implementing Security Chapter 6

[211]

Securing the application
You will need to secure your application and the origin because hackers could bypass
CloudFront to access your origin. In this section, we will briefly discuss access control
features you can use for restricting access to the origin.

Amazon S3 uses an Origin Access Identity (OAI) to prevent direct access to your Amazon
S3 bucket while ensuring performance benefits for all customers. It works by using a pre-
shared secret header and limiting access by whitelisting CloudFront only. Hence, only
CloudFront can access the Amazon S3 buckets. However, your origin may not be a S3
bucket, therefore you also need the ability to protect a custom origin. In this case, we
whitelist the CloudFront IP range and use a pre-shared secret origin header. You can also
configure SNS notifications on any changes made to the IP ranges.

More details on IAM including specific commands for our sample application are presented
in a later section of this chapter.

Implementing Identity Lifecycle Management
Typically, establishing robust Identity Lifecycle Management is often considered very late
in the development life cycle by organizations offering SaaS applications on a global basis.
For example, how do you keep track of active users within your customers' organizations?
This can leave you in a situation where an employee having access to your application
leaves the customer organization, located in a different time zone. Often it is easiest, from a
account management perspective, to have a feature within your SaaS application to create
an application administrator role per customer who, in turn, is responsible for managing
users within their respective organizations.

AWS Directory Services can help reduce the complexity of managing groups of users. These
groups can be mapped to IAM roles for appropriate access to AWS APIs. Organizations can
also choose to extend their on-premises directory services to the AWS cloud using Direct
Connect.

Designing for and Implementing Security Chapter 6

[212]

Tracking AWS API activity using CloudTrail
AWS CloudTrail is a web service for recording API activity (across AWS Console, CLI, or
from within SDKs) in your AWS account. It can also record higher-level API calls from
AWS services; for example, CloudFormation calls to other services such as EC2. CloudTrail
events provide a rich source of information for AWS API calls including the user, timing,
nature, resources, and location of an API call. Therefore, CloudTrail logs can be very helpful
in incident analysis, tracking changes made to AWS resource configurations, and
troubleshooting operational issues.

Logging for security analysis
As a design principle and best practice—log everything. In addition, if you collect all your
logs centrally then you can correlate between various log records for more comprehensive
threat analysis and mitigation. However, ensure your logging mechanism is scalable and
does not unduly impact the performance of your application. For example, you can use SQS
with auto-scaling based on queue depth for the logging activity. In addition, you can also
use products like Logstash and Kibana to help centralize log collection and visualization.
Kibana dashboards are dynamic and support features for drill down, reporting, and so on.
In addition, you can automate responses to certain events in your logs using AWS
CloudWatch and SNS.

Using third-party security solutions
Familiarize yourself with security offerings available in the AWS Marketplace as there are
hundreds of security ISVs and products that can replace what you are doing natively in
your application. Partner solution sets can be the answer to your specific situation or
application architecture.

In addition, certain enterprise vulnerability scanning software products such as HP Fortify
(available as a SaaS service or an on-premises product) or Veracode (SaaS service) can be
used to identify vulnerabilities within your application code. These enterprise security tools
may be expensive but they are great for the prevention of OWASP top-ten type
vulnerabilities in your application, and for promoting secure coding practices in your
development teams.

Designing for and Implementing Security Chapter 6

[213]

It is important to schedule a penetration test with specialists within your organization and
to employ external consultants to ensure your production site is secure. If this is the first
time your organization is doing vulnerability scans or getting penetration testing done by
specialists, then ensure you allow sufficient time in your project schedule for two or three
rounds of testing and remediation work.

Reviewing and auditing security configuration
It is key to regularly review and audit your security controls and implementation using a
combination of internal and external audits. They are primarily done to ensure your
implementation matches your overall security design and objectives. In addition, these
reviews and audits can ensure that your implementation limits the damage in case of any
security flaws in your architecture. Overall, these exercises are very useful because they
help you remain safe as well as satisfy your customers’ security requirements on an ongoing
basis.

Typically, these detailed reviews include a review of your network configuration including
all your subnets, gateways, ACLs, and security groups. In addition, adherence to IAM best
practices, AWS service usage, logging policies, and CloudWatch thresholds, alarms, and
responses are also reviewed in-depth.

Your architecture and infrastructure usage will evolve over a period of time. For example,
with deployments in new AZs and regions, new roles may get defined, permissions may be
created and/or granted, new AWS accounts created, and so on. Verifying changes to your
architecture and infrastructure can ensure that you are continuing to meet your security
goals.

In the following sections, we will describe the features and walk you through the process of
setting up security for our sample application. This will include using IAM roles and the
Key Management Service, configuring SSL, and implementing security for data at rest in
Amazon S3 and RDS.

Designing for and Implementing Security Chapter 6

[214]

Setting up security
This section looks at securing AWS infrastructure and the application. As the AWS security
model is a shared one where Amazon is responsible for the security of the infrastructure-
like facilities, hardware, network, and some software including virtualization, host
operating systems and so on, you as the user are responsible for the security of your
software stack, application, updates, data at rest and in transit, data stores, configuration
properties, policies, credentials, and the security of the AWS services being used.

Using AWS IAM to secure an infrastructure
AWS Identity and Access Management (IAM) is a web service that enables you to manage
users and user permissions within the AWS infrastructure. This allows for the central
control of users, user access, and security credentials. As there are a plethora of services
being offered by AWS, there is a need for authorized users to securely access these services.
IAM defines concepts, constructs, and services to achieve this.

IAM solves the following issues:

Credential scoping: Grants access and the required permissions only to the
services a user requires. For example, a web application needs write permission
to a specific bucket within S3, instead of assigning write permission to all the S3
buckets.
Credential distribution: Facilitates the distribution and rotation of credentials to
users, instances, and across applications in a secure manner.
Manages access for federated users: Federated users are users that are managed
outside IAM. Typically, these are users in your corporate directory. IAM allows
for granting access to the AWS resources to the federated users; this is achieved
by granting temporary security credentials to the federated user.

Covering IAM in its entirety is beyond the scope of this book and probably would need a
book of its own. In this section, only the pertinent IAM concepts and services are discussed,
which cover a general web hosting use case.

Designing for and Implementing Security Chapter 6

[215]

Understanding IAM roles
A role is a set of permissions that grants access to AWS resources. Roles are not associated
with any user or group but instead are assumed by a trusted entity which can be an IAM
user, application ,or AWS service such as EC2. The difference between an IAM user and a
role is that a role cannot access the AWS resources directly, implying that they do not have
any credentials. This property is very useful when the trusted AWS service, such as EC2,
assumes a role. There is no need to provide credentials to an EC2 instance. This solves a
very important issue—credential distribution and rotation, plus not having the credentials
stored as clear text or in an encrypted form.

Since we have already created an IAM role in Chapter 3, AWS Components, Cost Models, and
Application Development Environments, and assigned it to an EC2 instance, we will not go
through it again. While assigning permissions to roles, always remember to assign only the
required permissions as per the principle of least privileges (http:/ /en.wikipedia. org/
wiki/Principle_of_ least_ privilege) .

Let's examine how this works when an application running in an EC2 instance uses an
AWS-supplied SDK to access an AWS resource. The SDK API transparently fetches the
temporary credentials via the instance metadata service which, in turn, requests the
temporary credentials from the AWS Security Token Service. Instance metadata is data
about your instance that can be used to configure or manage the running instance. If you
are not using an AWS SDK, you can still get the temporary credentials by querying the
instance metadata. The instance metadata can be queried from the running EC2 instance
from the command line by executing the following command:

curl http://169.254.169.254/latest/meta-data/

ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
iam/
instance-action
instance-id
instance-type
local-hostname
local-ipv4
mac
metrics/
network/
placement/
profile

http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege

Designing for and Implementing Security Chapter 6

[216]

public-hostname
public-ipv4
public-keys/
reservation-id
security-groups

For more information on the metadata, please refer to: http:/ /docs. aws.
amazon. com/ AWSEC2/ latest/ UserGuide/ ec2- instance- metadata. html.

To query the temporary security credentials for a role, execute the following from the
running EC2 instance command line:

curl
http://169.254.169.254/latest/meta-data/iam/security-credentials/ec2Instanc
es

ec2Instaces is the name of the role assigned to your EC2 instance. The response will be a
temporary security credential which the AWS SDK uses to access the resource:

{
 "Code" : "Success",
 "LastUpdated" : "2017-11-29T04:55:57Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAIGOEGNL3UXEPOELA",
 "SecretAccessKey" : "ZDn5onr2FyIrSyI2AQvq+TDRsHxHQsDHJBXSyROe",
 "Token" :
"FQoDYXdzELb//////////wEaDJOVGyRHYhX2yN8naiK3A+upsj7qMrkM1A3jXM/TyDMNdOEkkp
GGMSnA8IYb4ipwY/9SsWoA71EABjDxskYNbraY55MABvqPzHhforIWnp47Q2XvB7iDLZQh8KXbf
uuy4BlWWKtBbrqlLJZee7cL6mXlsjTYYRnRmasabFGDJ+V/HXA9hsQ4FwybdRVhvXVLlgdIUoUV
13gxTfUr7GbKyLzVYZZD6K7nFUFwttp34WWA2Y6xKB7inCfmlS9jGyB+73XxoeeeDZAflb6NI6w
5JmzOHNqfeBatJUwzJ1ppsP+wGMSkTpsIg/I30DN7TzPTGbbiH76tBJZO7bTfry8IDZVakPVC3M
p4KGJaM6NTDgyqjRnsNsFF9qyXTKiT6GCxRWFzTSis0oDIw95cPZR0OUiXfAurz637ul8FUAtxC
MOsyfxsEwp0hkykMvhEgUp3SOt7tPwWTNkaJj7HlPmC9PXlBXNpRtR1x2ju7C6ZBvyNJsviphZo
fKcSv+MvC1sFHgWK+L+6tEH9NMOqfqvhKwKNxfuZks70Ky59cX3yl+/qgWSEhzov6dREkz5LUbC
4xvmCc8TQKaxMrTMo5bardFcwLpRNgV0orfv40AU=",
 "Expiration" : "2017-11-29T11:28:08Z"
}

The temporary credentials are automatically rotated and have an expiry date/time
associated with them. The application has to query the instance metadata for the new
credentials before the current credential expires. If the AWS SDK is being used within an
application, then it manages it transparently and no credential key refresh logic is
necessary.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Designing for and Implementing Security Chapter 6

[217]

Using the AWS Key Management Service
We all have used encrypted data in some application or other, and the biggest challenge has
always been how to effectively hide the encryption key, the key with which the data is
encrypted within the application or the OS using different mechanisms. In the end, there
will always be a key that will be in clear text, which will unlock other keys or the encrypted
data. This is just for a single application. Now imagine if you have dozens of applications
running on the cloud. The challenge of key distribution and the effort to keep the key secret
multiplies exponentially.

With KMS, the master key is never released, enabling you to encrypt and decrypt data.
AWS Key Management Service manages the following issues:

Encryption for all your applications: Manages encryption keys used to encrypt
data stored by your applications regardless of where you store it. KMS provides
an SDK for the programmatic integration of encryption and key management.
Centralized Key Management: Provides centralized control of your encryption
keys, and presents a single view of the keys' usage. Allows for the creation of
keys, implements key rotation, creates usage policies, and enables logging.
Integrated with AWS services: Integrated with other AWS services such as S3,
Redshift, EBS, and RDS to make it easy to encrypt stored data.
Built-in auditing: Logs all API calls to KMS or AWS CloudTrail. Helps to meet
compliance and regulatory requirements by providing details of when keys were
accessed and who accessed them. A log file is delivered to your specified S3
bucket.
Fully managed: It is a fully managed service; AWS handles the availability,
physical security, and hardware maintenance of the underlying infrastructure.
Low cost: Low costs based on usage.

Let’s get started and create a master key, and then use it to encrypt and decrypt data.

Designing for and Implementing Security Chapter 6

[218]

Creating KMS keys
In this section, we will present the steps for creating KMS keys:

From the IAM dashboard navigation pane, click on Encryption Keys and then on1.
the Get Started Now button to create a new master encryption key:

Select US West (Oregon) from the Region drop-down list:2.

Designing for and Implementing Security Chapter 6

[219]

In this step, we create an alias:3.
Alias (required): The alias is a display name that is used to easily
identify the key. The alias must be between 1 and 32 characters long.
An alias must not begin with aws as those are reserved by Amazon
Web Services to represent AWS-managed keys.
Description: The description can be up to 256 characters long and
should tell users what the key will be used to encrypt.
Click on Next Step, which will configure the users who administer the
key:

Designing for and Implementing Security Chapter 6

[220]

Next, we specify a tag:4.

Next, we select the IAM role to define the administrative permissions. In this5.
step, you associate the users/roles who have administration rights to this key. The
administration rights are for enabling or disabling a key, the rotation of keys, and
adding users/roles who can use the key. In our example, IAM group admin users
is selected. Click on Next Step, which will configure the users who can use the
key to encrypt and decrypt the data:

Designing for and Implementing Security Chapter 6

[221]

Next, we define the key usage permissions. We assign usage rights to the IAM6.
users/roles. Usage rights in this context means to encrypt and decrypt data using
this key. Click on Next Step to review the key policy:

We review the policy and click on the Finish button to complete the process. You7.
can now review the policy before creating it. Click on Finish to create the new
master key:

Designing for and Implementing Security Chapter 6

[222]

You should see the following success message:8.

Note that after a key is created, it cannot be deleted; it can be only enabled
or disabled.

Using the KMS key
In the previous step, we created a master key; now we will use this key to encrypt and
decrypt data in the application. The use case is in the properties file. The database password
needs to be kept in encrypted format.

The following is a Java class used to encrypt and decrypt the data using KMS. Use this class
to first encrypt the data and then use the encrypted string in the properties file. Replace the
keyId in the following code with the ARN of the key you created in the previous section.
The ARN of the key can be viewed by double-clicking on the key you want to use from the
Encryption Keys screen from the IAM dashboard. Remove the credentials if you are
running it within the EC2 instance:

public class KMSClient{
 private String keyId = "arn:aws:kms:us-
west-2:450394462648:key/1cd0e2d5-61e1-4a71-a6b2-b9db825c9fce";
 private AWSCredentials credentials;
 private AWSKMSClient kms;

Designing for and Implementing Security Chapter 6

[223]

 public KMSClient(){
 credentials = new BasicAWSCredentials(accessKey, secretKey);
 kms = new AWSKMSClient(credentials);
 kms.setEndpoint("kms.us-west-2.amazonaws.com");
 }

 public String encryptData(String plainText) {
 ByteBuffer plaintext = ByteBuffer.wrap(plainText.getBytes());
 EncryptRequest req = new
EncryptRequest().withKeyId(keyId).withPlaintext(plaintext);
 ByteBuffer ciphertext = kms.encrypt(req).getCiphertextBlob();
 String base64CipherText = "";
 if (ciphertext.hasArray()){
 base64CipherText=Base64.encodeAsString(ciphertext.array());
 }
 return base64CipherText;
 }

 public String decryptData(String cipherText) {
 ByteBuffer cipherTextBlob = null;
 cipherTextBlob = ByteBuffer.wrap(Base64.decode(cipherText));
 DecryptRequest req = new
DecryptRequest().withCiphertextBlob(cipherTextBlob);
 ByteBuffer plainText = kms.decrypt(req).getPlaintext();
 String plainTextString = new String(plainText.array(),
java.nio.charset.StandardCharsets.UTF_8);
 return plainTextString;
 }
}

Application security
Regarding application security, we will explore:

Securing the data between the endpoints while it is being transported to prevent
a man-in-the-middle attack.
Encrypting and storing the data at rest.
Encrypting all the critical data, including passwords and keys used by the
application. We have already covered this previously in the Using the AWS Key
Management Service section.

Designing for and Implementing Security Chapter 6

[224]

Implementing transport security
Security for transporting data over HTTP is provided by a Secure Sockets Layer (SSL). SSL
is widely used on the internet to authenticate a service to a client, and then to provide
encryption to the transport channel. Since on AWSone of the endpoints is the user's browser
and the other is the Elastic Load Balancer (ELB), which was configured earlier in Chapter
4, Designing for and Implementing Scalability, configuring the ELB to accept SSL certificates
will secure the transport channel between the user's browser and the ELB. This implies the
data is not secured between the ELB and the application running in an EC2 instance, but
since it is on a VPC within the AWS infrastructure it is secure.

Digital certificates are issued by Certification Authorities (CAs) who are trusted third
parties that sign certificates for network entities they have authenticated using secure
means. Normally, you would create a CSR and have the CSR signed by the CA. Here we
will not use a commercial CA to sign a certificate but instead use a self-signed certificate. As
a consequence of that the browser will not be able to verify the self-signed digital certificate
or the authenticity of the website and will generate an exception. However, it will create a
secure transport channel between the browser and the ELB.

Generating self-signed certificates
We will use openssl to create the keys and the certificates, so make sure you have it
installed on your development machine. From the command line, execute the following
command (on an OS X or Linux machine):

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -nodes -
days 3650

This creates a 2048 bit RSA private key (in the key.pem file). The private key is used to sign
the certificate (the cert.pem file). While generating the signed certificate, ensure you enter
the correct information for Common Name (for example, server FQDN or YOUR name).
Here, we have used the ELB public DNS name:

Generating a 2048 bit RSA private key
..........+++
...
.................................+++
writing new private key to 'key.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

Designing for and Implementing Security Chapter 6

[225]

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Irvine
Organization Name (eg, company) [Internet Widgits Pty Ltd]:A1Electronics
Organizational Unit Name (eg, section) []:Software Engineering
Common Name (e.g. server FQDN or YOUR name) []:a1electronicsecommerce-
elb-965226090.us-west-2.elb.amazonaws.com
Email Address []:admin@a1electronics.com

Configuring ELB for SSL
The next step is to configure the ELB to support SSL using AWS CLI (instead of the
management console):

First we need to generate security credentials to access AWS services from our1.
development machine. Select My Security Credentials from the account drop-
down menu:

Designing for and Implementing Security Chapter 6

[226]

Click on the Continue to Security Credentials button:2.

Next, click on the Create New Access Key button:3.

Click on the Download Key File button (it contains your access and secret keys):4.

Designing for and Implementing Security Chapter 6

[227]

Install AWS CLI by executing the following command:5.

pip install awscli --upgrade --user

Include the library in your path by executing the following command (you can6.
include it in a shell script as well):

export PATH=~/.local/bin:$PATH

Execute the following command using the previously generated certificate and7.
private key files:

aws iam upload-server-certificate --server-certificate-name
a1SelfSignedCertificate --certificate-body
file:///Users/aurobindosarkar/Downloads/cert.pem --private-key
file:///Users/aurobindosarkar/Downloads/key.pem
{
 "ServerCertificateMetadata": {
 "ServerCertificateId": "ASCAI3QWEMZYFDPHV4SDA",
 "ServerCertificateName": "a1SelfSignedCertificate",
 "Expiration": "2027-11-27T07:58:58Z",
 "Path": "/",
 "Arn": "arn:aws:iam::450394462648:server-
certificate/a1SelfSignedCertificate",
 "UploadDate": "2017-11-29T08:34:12.463Z"
 }
}

Designing for and Implementing Security Chapter 6

[228]

Next, configure the security group to add a custom TCP rule to accept data on8.
port 8443. From the EC2 dashboard, navigate to Load Balancers and click on the
Edit security groups option:

In our example, the security group is sq-EC2WebSecurityGroup. Click on Edit9.
in the Inbound tab to add the TCP rule to accept data on port 8443. Delete the
Custom TCP Rule on Port Range 8080 as it being replaced by the 8443 port:

The next step is to add/configure the private and the public key on the ELB:10.
From the EC2 dashboard, navigate to Load Balancers, click on the
Listeners tab, and then click on Edit.
From Load Balancer Protocol, select HTTPS protocol.

Designing for and Implementing Security Chapter 6

[229]

Set the Load Balancer Port to 8443; this is the port we added to our
security group in our previous step.
From the Instance Protocol, select HTTP; this is the protocol between
the ELB and the EC2 instances.
Set the Instance Port to 8080; this is port the Tomcat is listening on.
From the Load Balancer Protocol, delete the HTTP protocol as it is not
needed anymore.

The next step is to associate the SSL certificate with the ELB. Click on Change11.
under the SSL Certificate:

Certificate type: Make sure the option for Choose a certificate from
IAM is selected
Certificate: Select the name of the certificate uploaded earlier
Click on the Save button:

Designing for and Implementing Security Chapter 6

[230]

This will configure ELB to support the SSL protocol. Test the URL on the browser using the
HTTPS protocol.

Securing data at rest
Another key aspect of security is to secure the data stored in physical storage devices such
as hard disks, USB drives, SAN devices, and so on. In the AWS cloud world, these would be
AWS data storage services such as S3, RDS, Redshift, DynamoDB, and so on. To secure data
at rest, symmetric encryption is used; that is, the data is encrypted with an encryption key,
and the data is secure as long as the encryption key is secure, so all effort is directed at
keeping the encryption key secure.

AWS provides the Key Management Service (KMS) to resolve issues related to the
management and storage of encryption keys, as described in the previous section. This
service is also used to secure data at rest. The encryption of data at rest is a key component
of regulations such as HIPPA, PCI DSS, SOC 1, 2 , 3 and so on. In the upcoming sections we
walk you through the process of securing the data at rest for S3 and RDS.

Securing data on S3
To secure the data at rest within S3, broadly there are two options:

Server-side encryption: Amazon S3 encrypts your object before saving it and
decrypts it when you retrieve the objects. The encryption and decryption process
is totally transparent and seamless. Amazon S3 can be configured in multiple
ways for the encryption keys.
Client-side encryption: The client is responsible for encryption of the object
before uploading to Amazon S3, and for decrypting the object after it has been
retrieved. The client is responsible for the encryption/decryption process and
management of encryption keys.

Using the S3 console for server-side encryption
The easiest way to secure data on S3 is via the S3 console.

As we don't have any S3 buckets in our sample application, we will create the bucket and
configure it to store data in encrypted form:

In the Amazon S3 console, click on the Create bucket button:1.

Designing for and Implementing Security Chapter 6

[231]

In the Create bucket pop-up window, specify a name for the bucket and the2.
region. Click on the Next button:

.

Designing for and Implementing Security Chapter 6

[232]

Select the AWS-KMS option for server-side encryption using AWS KMS3.
Manager:

Designing for and Implementing Security Chapter 6

[233]

Next, specify the permissions on the bucket. Here, we do not grant public access4.
to the bucket as we only access S3 from within our application. Click on the Next
button:

Designing for and Implementing Security Chapter 6

[234]

Review the information presented and click on the Create bucket button:5.

>

Designing for and Implementing Security Chapter 6

[235]

You should see your newly created S3 bucket as shown:6.

Securing data on RDS
The RDS service secures the database by encrypting the database volume with the specified
encryption key from the KMS. Note that RDS does not encrypt the database at the
application level; it encrypts the complete database volume at the OS file level.

The data stored in the database rows is in plain text; the application does not need the
encryption key to decrypt the data. If an unauthorized user gets hold of the database
volume, it will be of no use to him/her since it is encrypted, and without the encryption key
it cannot be decrypted. The option to encrypt the database volume is available at the time of
database creation.

Summary
In this chapter, we reviewed some of the strategies you can follow for achieving security in
your cloud application. We emphasized the best practices of implementing security using
AWS services. We followed this up with several sections on setting up security in our
sample application.

In the next chapter, we will shift our focus to production deployments, go-live planning,
and operations. We will also discuss data backup and restore, and application monitoring
and troubleshooting. We will also include a hands-on section that walks you through these
processes for our sample application.

7
Deploying to Production and

Going Live
In this chapter, we will focus on making your application live on the cloud. As an enterprise
or a start-up, you want to ensure your applications are deployed and supported to best
serve your customers. We will discuss the tools, approaches, and best practices in
deployment and operations that ensure smooth functioning of your applications in
production environments. We will also show you how to deploy the sample application in a
production environment.

In this chapter, we shall learn about:

Managing infrastructure, deployments, and support at scale
Creating and managing AWS environments using CloudFormation
Using CloudWatch for monitoring
Using AWS solutions for backups and archiving
Planning for production go-live activities

Deploying to Production and Going Live Chapter 7

[237]

Managing infrastructure, deployments, and
support at scale
In recent times, there has been a huge shift in the way organizations manage their cloud
environments and applications. This is in response to the ease of operating in the cloud,
availability of infrastructure on-demand, and cloud-based PaaS services that can readily be
leveraged within your applications. The overall speed and number of deployments have
increased greatly, thereby requiring significant levels of automation in application builds,
infrastructure provisioning, and deployments. Software development and release is
evolving into continuous delivery environments (enabled by features and services provided
by cloud vendors).

In such environments, it is important that tasks and processes be highly repeatable,
resilient, flexible, and robust. Amazon provides numerous tools, APIs, and services to
enable you to create highly-automated DevOps pipelines. These pipelines can help you
handle your infrastructure requirements, including provisioning your technology stacks,
performing deployments dynamically with zero downtime, and supporting your end-
customers at scale. Some of the major AWS services in these areas are AWS
CloudFormation, AWS CloudTrail, and AWS CloudWatch. These are described in more
detail in the subsequent sections.

Besides AWS tools and services, it is also important that we upgrade your skills and try to
stay as current as possible in terms of the new services and features released by Amazon.
This is important because the roles of application developers and infrastructure engineers
are also evolving rapidly. Increasingly, application developers are taking on end-to-end
responsibilities for their specific applications. These responsibilities include tasks that were
typically handled by specialized operations and infrastructure teams earlier. At the same
time, infrastructure engineers, specialists, and administrators are focusing more on network
architecture, infrastructural policies, templates, generic patterns, frameworks and models,
AWS service usage guidelines and principles, cloud security, and so on.

We strongly recommend that you actively engage with Amazon architects throughout the
development lifecycle. They have done this before and they can help you get it right the
first time. In addition, ensure you document everything including your design, code,
scripts, infrastructure, templates, policies, processes and procedures, and so on. This will
help with your team’s technical understanding of the cloud environment, aid the rapid on-
boarding of new team members, and help establish standards and guidelines in your
organization.

Deploying to Production and Going Live Chapter 7

[238]

Creating and managing AWS environments
using CloudFormation
Your primary goal for deployments includes minimizing the overall time and effort
required for it, while having predictability, flexibility, and visibility for each of the steps
required to install and run your cloud applications. AWS CloudFormation provides an easy
way to create and manage the AWS resources for your application. In addition,
CloudFormation allows you to do all this in a declarative and parametrized manner while
managing all of the dependencies for you.

It is important that you use CloudFormation right from the beginning even if your initial
configuration is simple enough to be provisioned and managed using the console. Also
ensure that all subsequent changes to your stacks flow through CloudFormation as well, in
order to avoid unpredictable results. If you need to make a change from outside of
CloudFormation, then you should have a process in place to make the appropriate changes
in the CloudFormation template before any subsequent stack updates. Ensure you protect
your stacks from accidental or inadvertent changes by strictly managing changes or updates
to your templates using tag-based IAM policies. You can also create stack policies that can
prevent changes to certain resources, for example, disallowing any changes to the database
while changes are being made to other resources in the stack. Use comments to describe the
resources and other elements in your templates. Following these practices will minimize the
chance of errors during the provisioning and updating of your environments.

A typical high-level workflow using CloudFormation is shown in the following figure. The
business requirements drive your application’s design and infrastructural requirements.
Subsequently, these designs and infrastructural requirements are realized in your
application's code and templates. CloudFormation templates are ideal for provisioning and
replication of your application's technology stack.

Deploying to Production and Going Live Chapter 7

[239]

The feedback loop helps you address your evolving business requirements, and also
improves your designs and processes over time. As costs form an important input that I
sent to the feedback loop, you can use the AWS Cost Explorer to obtain the costs associated
with your stack (by assigning appropriate tags to your resources):

The technology stack largely consists of hardware, the OS, libraries, and your application
packages and/or code. You can define one or more stacks based on your application layers
and environments, that is, dev, test, staging, and production. In addition, you can also
define nested stacks to address various layers or components in your architecture.
CloudFormation templates that reference other templates result in nested stacks or a tree of
stacks. This is typically done to drive as much reusability as possible to your deployment
processes. For example, if you have several websites sharing common requirements in
terms of their load balancing and autoscaling features, then you can create a template for
your ELB and autoscaling groups, and reuse it across multiple stacks.

Multiple stacks are typically required not only to organize your implementation according
to layers or environments but also because these layers and environments have different
characteristics. These characteristics may include different life cycles associated with your
AWS resources or different ownership associated with the layers in your architecture. In
addition, if you have services and/or databases that are shared by multiple applications,
then having a separate stack for them will help you manage these resources better.

Deploying to Production and Going Live Chapter 7

[240]

Creating CloudFormation templates
AWS CloudFormation provides sample templates that you can use as a starting point for
defining your specific requirements. You will need to create one or more templates to
translate your design into stacks. For example, if you have designed a services-oriented
application then your application contains units of functionality and contracts that define its
interfaces. You might also have dependencies between your services. Hence, your stacks
will need to reflect these services' characteristics in terms of parameters, output, and so on.

Creating CloudFormation templates is very similar to software development practices. For
example, you will need to develop and conduct code reviews, maintain repositories and
version control, and test, run, and maintain them. In addition, when you hit errors you will
need to debug and fix your code.

In order to minimize errors and the time taken to develop production quality
CloudFormation templates, ensure that you:

Validate the template (check for structure and API usage, JSON syntax, the
presence of circular dependencies, and so on).
Use parameter types to avoid bad input parameters and specify appropriate
parameter-related constraints and regex patterns. These parameters are validated
at the beginning of the stack creation process, so if there are any errors you will
know almost immediately.
Grant IAM permissions for creating the full stack and all the resources specified
in the template. In addition, ensure that permissions are given to create/update
the stack as well as rollback the changes.
Ensure sufficient quotas for all the resource types in your stack, for example, the
number of EC2 instances, RDS storage limits, and so on.

It is good practice to leverage CloudFormation::Init to declaratively specify the
packages to be installed and users to be created, as well as executing configuration scripts
and so on. CloudFormation::Init makes your application updatable; for example, you
can update the running stack with a new version of your application. If you prefer to use
tools such as Chef, then you can also use Chef recipes to install and/or update your
application in the stack.

As a security best practice, never include secret keys and access keys in your
CloudFormation templates. You can leverage IAM roles to achieve the same result. Even if
you need to include parameters such as database passwords, you should mark them with a
no echo option. That will ensure that the parameter is not revealed in the logs or stack
events.

Deploying to Production and Going Live Chapter 7

[241]

Leverage CloudFormation's integration with other AWS services and features to get a better
handle on managing your stack. For example, use CloudFormation’s integration with
CloudTrail to log CloudFormation API calls. Furthermore, you can query these logs and set
alerts. These features can enable you to troubleshoot or debug any issues.

There are other AWS tools that can help you with creating and updating your
CloudFormation templates. For example, you can use AWS Config for detecting changes in
the stack made from outside of CloudFormation. You can also use CloudFormer to create
CloudFormation templates from existing resources in an active stack.

Building a DevOps pipeline with CloudFormation
Application deployments in traditional environments used to take days, and if the
deployment required procurement of infrastructure then the deployment cycle would
extend to weeks and sometimes even months. With cloud applications, the infrastructure is
available on-demand and deployment time is reduced to minutes. In large enterprises, the
average number of deployments across their application portfolio now runs into a couple of
hundred per day. In order to achieve smooth and error-free deployments with zero
downtime, it is imperative to plan, design, and implement a highly-automated DevOps
pipeline.

The following figure illustrates a DevOps pipeline incorporating code repositories, a
continuous integration environment, AWS CloudFormation, and application environments:

Deploying to Production and Going Live Chapter 7

[242]

CloudFormation is a key part of your DevOps pipeline, enabling faster production releases.
For example, as shown in the figure, you can set up a continuous integration environment
that builds your application, packages the application code and CloudFormation templates,
and then uses CloudFormation templates to create the stack and deploy your application (in
various environments including the final promotion to production).

Updating stacks
There are primarily two main approaches to updating your stack—the in-place and Blue-
Green approach. Each of these approaches has their own pros and cons, and you should
select the approach that is most suitable for your specific situation. You can also start with
one approach and then move to a different approach depending on your business needs.

As the name suggests, the in-place updates approach requires you to create a new template
and then use that template to update your existing stack by using the update stack API.
This approach is faster, more cost-efficient, and the migration of data and application states
is much simpler than with the Blue-Green approach.

In the Blue-Green approach, you take the new template and create a completely new and
separate stack (from your currently running stack). After you have verified that the new
stack is running as per your requirements, you switch production traffic over to it. The
main steps in a Blue-Green deployment are illustrated in a series of figures here.

Instances within the production stack are labeled Blue and the instances hosting the new
stack are labeled Green. The Blue fleet is currently serving all of the production traffic:

Deploying to Production and Going Live Chapter 7

[243]

Verification and acceptance tests for the new stack are conducted on the Green fleet while
the Blue fleet continues to serve the production traffic:

After the acceptance tests are successfully cleared, the production traffic is switched over to
the Green fleet:

The Green fleet is then labeled Blue and is serving all of the production traffic. The fleet that
was originally Blue is now labeled Green:

Deploying to Production and Going Live Chapter 7

[244]

The primary advantage of the Blue-Green approach is that you are not touching the
currently running stack at all. You also have the option to fallback to the old stack at any
time, easily. However, Blue-Green deployments are expensive, as this approach requires
you to spin up a duplicate set of instances. The success of this approach is also highly
dependent on the thoroughness of your acceptance tests. In addition, the DNS switch can
create issues as DNS clients are not well behaved and require ELB warm-up.

Each of the stack update options have certain desirable characteristics, and you can combine
them appropriately to create an approach that works best for you.

There are several variants of the Blue-Green approach that address some of the
shortcomings of the traditional Blue-Green deployment approach discussed previously.

An approach that uses a mix of the Green and Blue instances (with a single ELB) may be
useful for certain applications, and is described here.

The starting state is a single fleet of instances labeled Blue (belonging to an Auto Scaling
group). These instances are serving all of the production traffic:

In this stage, you create a new instance hosting the new stack (in a separate Auto Scaling
group with a maximum size of 1). While the Blue fleet is serving a majority of production
traffic, the Green instance also starts serving some of the production traffic:

Deploying to Production and Going Live Chapter 7

[245]

In the next step, you scale up the Green fleet:

Finally, you switch over to the Green fleet:

At this stage, you can shut down the Blue fleet and your Green fleet is now the designated
Blue fleet. This approach takes into consideration that acceptance tests may not be complete
or comprehensive. At the same time, there are no DNS changes or ELB warm-ups required.

A variant of the Blue-Green approach that works well within an Auto Scaling group is
rolling updates. The updates are applied to the instances in batches (with zero downtime).
CloudFormation ensures that there is always a set of healthy instances serving your
customers at all times. In this approach, the Auto Scaling group is divided into several
batches, and then the update is applied to the first batch of instances. ELB health checks
should be enabled to ensure that the instances are healthy after the update has been
applied. If the instances in the batch are healthy, then you can signal back to
CloudFormation to update the next batch of instances. These rolling updates, across all your
instances, can be achieved using a single CloudFormation template.

Deploying to Production and Going Live Chapter 7

[246]

Extending CloudFormation
Typically, extensions to CloudFormation are required if your application uses third-party
services and you want to include the provisioning of the third-party resources in your
CloudFormation template. Extensions to CloudFormation may also be required for AWS
services that are not currently supported by CloudFormation, or if you have a requirement
to provision on-premises resources as a part of your stack. Two ways of including such
resources in your CloudFormation stack are discussed here.

In the first approach, for achieving a tighter integration of such services or custom
resources, in our stack the third-party service provider will need to expose a service that can
process incoming provisioning-related create, update, and delete requests. CloudFormation
will send a message to the third-party service and wait for a response. Upon a success
response, CloudFormation will continue with its stack creation process, otherwise it will fail
out. This way, CloudFormation can treat the entire stack including the external resources as
a single unit that either succeeds fully or fails out in its entirety.

The second approach leverages stack events to achieve the same results. For example, if you
want your web application to provision a subscription to a third-party service, then while
CloudFormation provisions your web application it produces certain stack events.
CloudFormation delivers these events to an SNS topic that is subsequently picked up by a
provisioning application (that you have to write) in order to subscribe to the third-party
resource. This approach is not as robust as the previous one because CloudFormation is not
aware of failure during the provisioning of the third-party service.

Using CloudWatch for monitoring
Amazon CloudWatch enables the monitoring of Amazon services, standard and custom
defined metrics, and a variety of logs. Typically, you would want to retrieve metrics for
analysis and/or integration with other monitoring tools. For example, you can use AWS
Trusted Advisor to analyze your AWS configuration and usage, compare it to the best
practices, and to alert you to opportunities to save on costs, help close security gaps, or
improve system reliability and performance. CloudWatch provides APIs for retrieving
hundreds of metrics by namespace, start and finish times, intervals, and so on.

Deploying to Production and Going Live Chapter 7

[247]

CloudWatch logs can be monitored for errors, exceptions, HTTP response codes, Amazon
S3 logs, and so on. In addition, you can also use the logs to correlate the system status with
change events such as when AWS CloudFormation is used to rollout a new stack. We can
define metric filters on the logs and raise alerts based on specific thresholds. These alerts
can in turn be forwarded to SNS topics for appropriate notifications to be pushed out. The
metric filters can be based on literal terms, common log formats, or specified using JSON. In
addition, you can combine multiple literal terms, group the terms, count occurrences,
and/or specify variable names for log record fields, and so on.

For monitoring API calls to AWS services, you can integrate AWS CloudTrail logs with
AWS CloudWatch. You can also choose to receive SNS notifications from CloudWatch for
the API activity captured by CloudTrail. Typically, you will turn on this integration from
the CloudTrail console or through a CloudFormation template, define a metric filter for
your CloudWatch Logs log group, assign a CloudWatch metric to the metric filter, and then
create an appropriate CloudWatch alarm.

Other alternatives include subscribing to third-party logging services or rolling out your
own solution for centralized monitoring. For example, you can use AWS Kinesis to ingest
logging messages, an Elasticsearch cluster for searching through the records efficiently, and
a product such as Kibana for visualization support. There are several third-party logging
service providers such as Loggly, Splunk, Sumo Logic, and so on. You can subscribe to their
services to meet your requirements (at scale).

Using AWS solutions for backup and
archiving
Using AWS for backups and archiving is very common and an easy entry point for
organizations new to the cloud. The main reasons for the popularity cloud-based backup
solutions are AWS’ global infrastructure, data durability SLAs, a rich ecosystem of partners
and vendors, and compliance with regulations such as HIPAA, PCIDSS, and so on. Taking a
phased approach that begins with using cloud storage as a backup data store is a reasonable
and common approach. However, taking this further to create your application
environment in the cloud can be a good business continuity strategy. It is also easier to track
the actual usage of the backup data on the cloud, thereby presenting further opportunities
to reduce your overall costs.

Deploying to Production and Going Live Chapter 7

[248]

In most cases, the enterprise already has a well-established backup strategy, policy, and
technology solution in place. They are not looking for a complete replacement. The primary
motivation here is to leverage the cloud as a lower cost destination. However, for most early
stage start-ups, the cloud may represent their first and only backup solution.

There are third-party solutions such as Commvault that are natively integrated with
Amazon S3 and Glacier. Other backup solutions can also be integrated using storage
gateways. These approaches can help evolve your backup solution to embrace cloud
storage with the least disruption while you continue to use your existing processes. Cloud
storage represents "unlimited" capacity so you do not have to worry about closely tracking
your tape usage or rotating through them constantly.

It is important to carry out a data classification exercise for all the data in your application.
For example, you might classify your data as long-term data to be kept for compliance
reasons and unlikely to be restored, very high volume data to be transferred from on-
premises storage to the cloud, data shared by multiple applications (document shares,
image repositories, and so on), highly available data, data related to online collaboration
applications, and so on. This classification can help you choose appropriate solutions for
storage and backup. AWS provides different storage classes, that is, S3, Glacier, and EBS, to
meet varied data life cycle management requirements. All these data storage services are
scalable, secure, and reasonably priced.

It is also important to define certain guiding principles for your backups. For example, you
could choose to back up only the data and not the entire VM. This would mean you are
choosing to rebuild (using a service such as AWS CloudFormation) instead of restore. Other
guidelines may recommend building stateless services and storing all data on Amazon S3
and leveraging services such as SQS, assuming that all instances are temporary or fail
sooner or later. You might also want to take snapshots of your EBS volume on other EBS
volumes to recover faster from instance failures. In the DevOps environment, owners of
applications have increasing responsibilities in terms of their data.

While evaluating the cost of a cloud-based backup strategy, ensure you do not restrict your
TCO calculations to hardware and software alone. For a good comparison, ensure you take
into consideration costs associated with facilities, maintenance, people and professional
services, storage utilization, transportation, cost of capital, and so on. In larger backup
environments, the cost of a cloud-based solution compares very favorably versus the total
cost of physical media, robot systems, and other costs mentioned earlier.

Deploying to Production and Going Live Chapter 7

[249]

Planning for production go-live activities
In this section, we will cover the final steps required for a new application to go live on the
cloud. By this time, your application should have been fully tested (against functional and
non-functional requirements) and accepted by the business. All your templates for
automated production infrastructure provisioning and deployment scripts should be tested
and ready to go, and backup policies and disaster recovery strategies documented and
tested.

It is very useful to create a comprehensive checklist for executing the actual go-live process.
This will ensure that you are systematically executing each step in the process, verifying
intermediate results (for example, complete and correct data migration), communicating to
the stakeholders at regular intervals, making go/no-go decisions at the appropriate times,
having a rollback strategy clearly defined, and so on.

As a good practice, after you have deployed your application in the production
environment, run a set of predefined tests to ensure your application is functioning as
required. You should also test that application monitoring and logging is functioning as
expected. Finally, ensure that you engage internal and/or external specialists to conduct a
penetration test. These tests could result in changes to the application as well as some
infrastructure settings, therefore plan sufficient time in your schedule for a couple iterations
of the penetration test. After you have cleared the penetration test, you should be officially
live and actively serving your customers.

At this time, you may also want to schedule a team meeting to analyze what worked well
versus what could have been done better during the project. It is also useful to document
lessons learnt and best practices for your specific situation, and plan your next release of the
application with new features, bug fixes, and tweaks to your infrastructure.

Deploying to Production and Going Live Chapter 7

[250]

In the next section, we will walk you through the deployment-related activities for our
sample application.

Setting up for production
This is it! The final section in which AWS will be configured to host the application for
production deployment. The key issues in production setup are the health monitoring of the
application, disaster recovery (both for data and infrastructure), and a secure production
environment (with reasonable ongoing costs).

AWS production deployment architecture
For the first step, we need to design the deployment architecture. You can architect AWS in
several different ways to meet your business requirements. The deployment architecture
presented here takes into consideration security practices, and is specifically designed for
scalability and high availability. In addition, it is an extension to the one presented for HA
in Chapter 5, Designing for and Implementing High Availability.

Let's re-examine the choices we made for the selection and configuration of AWS resources.
The choices for regions, availability zones, ELB, ASG, RDS, and S3 have already been
covered in chapters 3 to 5. All the AWS resources needed for production setup have been
discussed previously.

Deploying to Production and Going Live Chapter 7

[251]

The following diagram represents the deployment architecture for our sample application:

Deploying to Production and Going Live Chapter 7

[252]

VPC subnets
The first step is to logically partition the VPC into separate subnets based on our
requirements. Next we apply security groups (firewalls) to each of the subnets to accept
connections on fixed TCP ports (from predefined subnets). The main purpose of having
separate subnets is to secure the hosts by restricting access to them. For example, we host
the RDS MYSQL database server in a private subnet that accepts connections on port 3306
only. This access is restricted to be from two public subnets. The VPC and the subnets
created within the VPC are listed here:

Subnet at 172.31.112.0/20 that hosts the bastion host and accepts SSH
connection from trusted sources only.
Public subnets hosting the EC2 instances in the auto-scaling group for the
application. It accepts HTTP and HTTPS connections from any source.
Private subnets at 172.31.80.0/20 and 172.31.96.0/20 to host the database
servers and accept MYSQL connections only from defined public and bastion
security groups.

The default VPC subnets configured in Chapter 5, Designing for and Implementing High
Availability, were 172.31.16.0/20 in AZ us-east-1a and 172.31.48.0/20 in AZ us-
east-1c. We will continue to use them as our public subnets.

Private subnet
Any EC2 running on a private subnet can be accessed from another EC2 instance from
within VPC network or over a VPN network. The instances running are not accessible via
the public internet. Each VPC has a default internet gateway associated with it. A new
subnet is always created as a public subnet. The public subnet can be changed to a private
subnet by assigning its route table to a private route table:

Deploying to Production and Going Live Chapter 7

[253]

The first step is to create a private route table:1.
From the VPC dashboard, navigate to Route Tables and click on1.
the Create Route Table button:

In the Create Route Table popup, assign the name of the route table in2.
the Name tag. Click on the Yes, Create button:

Deploying to Production and Going Live Chapter 7

[254]

You should see the following screen:3.

The next step is to create a subnet:4.
From the VPC dashboard, navigate to Subnets and then click on1.
Create Subnets:

Deploying to Production and Going Live Chapter 7

[255]

Name tag: Specify a name for the subnet. This name will be reflected in2.
the VPC dashboard.
VPC: Choose the VPC in which this subnet will be created. Select the3.
option containing 172.31.0.0/16 from the dropdown if you have
more than one VPC.
Availability Zone: The availability zone in which this subnet will be4.
created. From the dropdown, select us-west-2a; this is one of the two
private subnets. The other one will created in the us-
west-2c Availability Zone as per the deployment architecture.
CIDR block: Classless Inter-Domain Routing (CIDR) defines a range5.
of IP addresses to be allocated to the hosts in the subnet. In this
case, 172.31.80.0/20 defines the IP address range from
172.31.80.0 to 172.31.95.255 (a total of 4,096 hosts):

Deploying to Production and Going Live Chapter 7

[256]

You should see the following screen:6.

The last step is to associate the private route table created in step 1 with the7.
subnet created in step 2:

From the VPC dashboard, navigate to Subnets and click on the subnet1.
created in step 2.
Navigate to Route Table tab in the bottom pane and click on Edit:2.

Deploying to Production and Going Live Chapter 7

[257]

From the Change To dropdown, select the route created in step 1:3.

Similarly create another subnet, Private Subnet, with CIDR block 172.31.96.0/20 in the
Availability Zone us-west-2c; assign the private route table to it (created in step 1):

Deploying to Production and Going Live Chapter 7

[258]

Bastion subnet
Create another subnet named bastion, with CIDR block 172.31.112.0/20 in Availability
Zone us-east-1a:

There is no need to assign a private route table to it as the EC2 instances running in this
subnet will be accessed by clients from the public internet.

Bastion host
A bastion host is a secure host that accepts SSH connections only from trusted sources. A
trusted source is the static IP address of your internet connection. This ensures that the
access to your AWS resource is from a machine from within your network. A bastion is
used to administer your AWS network and instances. All instances accept SSH connections
only from the bastion security group.

Deploying to Production and Going Live Chapter 7

[259]

Security groups
The traffic between the instances is governed by the ingress (inbound) and egress
(outbound) rules defined in the security groups. Listed here are recommended security
groups and their inbound and outbound rules. Please refer to Chapter 2, How Are Cloud
Applications Different?, for how to create security groups.

ELB Security Group Recommended Rules: Apply this security group to the ELB.

Inbound:

Source (CIDR) Protocol Port Range Comments

0.0.0.0/0 TCP 8080 Accept HTTP traffic from anywhere.

0.0.0.0/0 TCP 8443 Accept HTTPS traffic from anywhere.

Outbound:

Destination (CIDR) Protocol Port
Range Comments

ID of Web security group TCP 8080 Route HTTP traffic to instances that
have a web security group assigned.

ID of Web security group TCP 8443 Route HTTPS traffic to instances that
have a web security group assigned.

Recommended Rules for the Web Security Group: Apply this security group to EC2
instances running on public networks in both the Availability Zones. This security group is
for the web servers.

Inbound:

Source (CIDR) Protocol Port Range Comments

ID of ELB security group TCP 8080 Accept HTTP traffic from the load
balancer.

ID of ELB security group TCP 8443 Accept HTTPS traffic from the load
balancer.

ID of Bastion security
group TCP 22 Allow SSH traffic from the bastion

network.

Deploying to Production and Going Live Chapter 7

[260]

Outbound:

Destination (CIDR) Protocol Port Range Comments

ID of Database security
group TCP 3306

Allow MYSQL access to the database
servers assigned to the database
security group.

Recommended Rules for the Bastion Security Group: Apply this security group to EC2
instances running on the bastion network.

Inbound:

Source
(CIDR) Protocol Port

Range Comments

MyIP TCP 22

Accept SSH connection for your fixed static IP. This
implies you can connect to the bastion sever from only
the IP address. If you do not have a static IP, change
the source to 0.0.0.0/0.

Outbound:

Destination (CIDR) Protocol Port
Range Comments

ID of Database security
group TCP 3306 Allow MYSQL access to the database

servers to administer the MYSQL database.

ID of Web security
group TCP 22

Allow SSH access to the web server
instances for administration running on the
public network.

Recommended Rules for the Database Security Group: Apply this security group to EC2
instances running on the private network in both the availability zones. This security group
is for the database servers:

Inbound:

Source (CIDR) Protocol Port
Range Comments

ID of Web security
group TCP 3306 Accept MYSQL connections from the web

application running on the public network.

Deploying to Production and Going Live Chapter 7

[261]

ID of Bastion
security group TCP 3306 Allow MYSQL access to the database servers

to administer the MYSQL database.

Outbound:

Destination (CIDR) Protocol Port Range Comments

None None None Delete all outbound rules.

Infrastructure as Code
So far we have been setting up the AWS infrastructure via the Amazon AWS console, which
is quite helpful in the initial stages when you are learning the ropes. However, it is good
practice to build your cloud infrastructure via code.

AWS provide two services, CloudFormation and AWS OpWorks. CloudFormation focuses
on providing foundational capabilities for the full breadth of AWS services, while AWS
OpWorks focuses on deployment, monitoring, auto-scaling, and automation, and supports
a narrower range of application-oriented AWS resource types including EC2 instances, EBS
volumes, Elastic IPs, and CloudWatch metrics.

Setting up CloudFormation
While working with CloudFormation, you define the AWS resources you need and then
wire them together as per your architecture's requirements:

{
 "AWSTemplateFormatVersion" : "",
 "Description" : "",
 "Parameters" : {
 },
 "Mappings" : {
 },
 "Conditions" : {
 },
 "Resources" : {
 },
 "Outputs" : {
 }
}

Deploying to Production and Going Live Chapter 7

[262]

The template JSON file includes the following sections; only the Resources section is
mandatory while the rest are all optional:

AWSTemplateFormatVersion: Defines the capabilities of the template. Only one
version has been defined so far.
Description: Free text; use it to include comments for your template. It should
always follow AWSTemplateFormatVersion. The max size of this free text is
1,024 characters.
Parameters: It is used to pass values to the template while creating the stack,
and helps customize the template each time you create a stack.
Mappings: As the name suggests, it is map of key-values pairs. For example, this
can be used to select the correct AMI base image for a region where the stack is
being created; the key will be the region and the value will be the AMI ID of the
base image.
Conditions: Since JSON cannot have any logic embedded in it, a section was
created to implement the basic conditional logic evaluation within the JSON
template. The conditional logic functions available are AND, OR, EQUALS, IF and
NOT.
Resources: This is the section in which you define your AWS resources and wire
them together. This section is mandatory.
Outputs: In this section, you declare the values to be returned upon creation of
each AWS resource. This is useful, for example, to find the ELB URL or a RDS
endpoint.

Since a full CloudFormation template for our production deployment architecture can run
into hundreds of lines of JSON code, we will only present the creation of key AWS
resources; however, the complete script, a1ecommerceaws.json, is available for download
in the source code repository.

VPC: Here, a different CIDR block is used for production instead of the default
172.31.0.0/16. You can skip this if you want to keep the default CIDR block,
but remember to change the reference to the VPC in the subnets:

"VPC":{
 "Type":"AWS::EC2::VPC",
 "Properties":{"CidrBlock":"10.44.0.0/16",
 "EnableDnsSupport" : "true",
 "EnableDnsHostnames" : "true",
 "InstanceTenancy" :{"Ref":"EC2Tenancy"},
 "Tags":[{"Key":"Application",
 "Value":{"Ref":"AWS::StackName" }

Deploying to Production and Going Live Chapter 7

[263]

 },
 {"Key":"Network","Value":"Public" },
 {"Key":"Name","A1Ecommerce Production"}
]
0 }
},

Subnets: As an example only one sample is presented here for the public subnet.
Remember to replace CidrBlock with 172.31.16.0/24 and VPC ID with the
default VPC identifier, for example vpc-e4ef7882. The DependsOn is not
required if you wish to create the subnets in the default VPC. Similarly, create the
other subnets:

"PublicSubnet":{
"DependsOn":["VPC"],
 "Type":"AWS::EC2::Subnet",
 "Properties":{
 "VpcId":{"Ref":"VPC"},
 "CidrBlock":"10.44.0.0/24",
 "AvailabilityZone":"us-west-2a",
 "Tags":[
 {"Key":"Application",
 "Value":{"Ref":"AWS::StackName"}
 },
 {"Key":"Network","Value":"Public"},
 {"Key":"Name","Value":"Public Subnet"}
]
 }
}

Security Group: As an example, the ELB security group is specified here.
Similarly, create the other security groups:

"ELBSecurityGroup":{
 "DependsOn":["VPC"],
 "Type":"AWS::EC2::SecurityGroup",
 "Properties":{
 "GroupDescription":"ELB Base Security Group",
 "VpcId":{"Ref":"VPC"},
 "SecurityGroupIngress":[
 {"IpProtocol":"tcp","FromPort":"80",
 "ToPort":"80","CidrIp":"0.0.0.0/0"},
 {"IpProtocol":"tcp","FromPort":"443",
 "ToPort":"443","CidrIp":"0.0.0.0/0"},
],
 "Tags":[{

Deploying to Production and Going Live Chapter 7

[264]

 "Key":"Name",
 "Value":"ELB Security Group"}
]
 }
},
"ELBSecurityGroupEgress80":{
 "DependsOn":["ELBSecurityGroup"],
 "Type":"AWS::EC2::SecurityGroupEgress",
 "Properties":{
 "GroupId":{"Ref":"ELBSecurityGroup"},
 "IpProtocol":"tcp","FromPort":"8080",
 "ToPort":"8080",
 "DestinationSecurityGroupId":{
 "Fn::GetAtt": ["WebSecurityGroupPublic","GroupId"]
 }
 }
},
"ELBSecurityGroupEgress443":{
 "DependsOn":["ELBSecurityGroup"],
 "Type":"AWS::EC2::SecurityGroupEgress",
 "Properties":{"GroupId":{"Ref":"ELBSecurityGroup"},
 "IpProtocol":"tcp","FromPort":"8443",
 "ToPort":"8443",
 "DestinationSecurityGroupId":{
 "Fn::GetAtt": ["WebSecurityGroupPublic","GroupId"]
 }
 }
 }

RDS: An RDS subnet needs to be created so that the RDS service can run in the
correct availability zones, us-west-2a and us-west-2c:

"RDSSubnetGroup":{
"Type" : "AWS::RDS::DBSubnetGroup",
"Properties":{
 "DBSubnetGroupDescription":"Availability Zones for CanvasDB ",
 "SubnetIds" : [{ "Ref" : "PrivateSubnet" },
 { "Ref" : "DbPrivateSubnet" }
]
"A1EcommerceMasterDB" : {
 "Type" : "AWS::RDS::DBInstance",
 "Properties" : {
 "DBName" :"a1ecommerce",
 "DBInstanceIdentifier" : "a1ecommerce",
 "AllocatedStorage" : "5",
 "DBInstanceClass" : "db.t1.micro",
 "BackupRetentionPeriod" : "7",

Deploying to Production and Going Live Chapter 7

[265]

 "Engine" : "MySQL",
 "MasterUsername" : "a1dbroot",
 "MasterUserPassword" : "a1dbroot",
 "MultiAZ" : "rue",
 "Tags" : [{ "Key" : "Name", "Value" : "A1Ecommerce Master
Database" }],
 "DBSubnetGroupName":{"Ref":"RDSSubnetGroup"},
 "VPCSecurityGroups": [{ "Fn::GetAtt": [
"PrivateSecurityGroup", "GroupId"] }],
 },
 "DeletionPolicy" : "Snapshot"
}

ELB: The ELB is straightforward. It routes the incoming traffic to the two subnets
in the two availability zones and is assigned the ELB security group:

"ElasticLoadBalancer":{
 "Type":"AWS::ElasticLoadBalancing::LoadBalancer",
 "DependsOn":["PublicSubnet","HASubnet"
],
 "Properties":{
 "Subnets":[{"Ref":"PublicSubnet"},
 {"Ref":"HASubnet"}
],
 "CrossZone":"true",
 "Listeners":[{
 "LoadBalancerPort":"8080",
 "InstancePort":"8080",
 "Protocol":"HTTP"
 },
 {
 "LoadBalancerPort":"8443",
 "InstancePort":"8443",
 "Protocol":"TCP"
 }
],
 "ConnectionDrainingPolicy":{
 "Enabled":"true","Timeout":"60"
 },
 "SecurityGroups":[{
 "Ref":"ELBSecurityGroup"
 }
],
 "HealthCheck":{
 "Target":"HTTP:8080/index.html",
 "HealthyThreshold":"3",
 "UnhealthyThreshold":"5",

Deploying to Production and Going Live Chapter 7

[266]

 "Interval":"30",
 "Timeout":"5"
 }
 }
}

Launch Configuration: The ImageId is your base AMI instance that the Auto
Scaling group will launch. Replace the image ID with your own AMI:

"LaunchConfig":{
"Type":"AWS::AutoScaling::LaunchConfiguration",
"Properties":{
 "KeyName":{
 "Ref":"KeyPairName"
 },
 "ImageId":"i-3a58b4cd"
 "SecurityGroups" : [{ "Ref" : "WebSecurityGroupPublic" }],
 "InstanceType":{
 "Ref":"EC2InstanceASG"
 },
}
}

Scaling Configuration: There are two scaling configurations, one to scale up
and the other to scale down. Auto scaling will add/remove new EC2 instances as
defined in the ScalingAdjustment field whenever the alarm goes off. Due to
lack of space, only WebServerScaleUpPolicy is presented:

"WebServerScaleUpPolicy":{
"Type":"AWS::AutoScaling::ScalingPolicy",
"Properties":{
 "AdjustmentType":"ChangeInCapacity",
 "AutoScalingGroupName":{
 "Ref":"WebServerGroup"
 },
 "Cooldown":"60",
 "ScalingAdjustment":"1"
}
},
"WebServerScaleDownPolicy":{
.
.
}

Deploying to Production and Going Live Chapter 7

[267]

Scaling Alarms: Next are the alarms that are the qualifiers for the Auto Scaling
group to add or remove EC2 instances. In this example, a new EC2 instance is
added whenever the average CPU load is > 90% for a period of 5 minutes, and an
EC2 instance is removed whenever the average CPU load is < 70% for a period of
5 minutes. Due to lack of space, only CPUAlarmHigh is presented here:

"CPUAlarmHigh":{
"Type":"AWS::CloudWatch::Alarm",
"Properties":{
 "AlarmDescription":"Scale-up if CPU > 90% for 5 minutes",
 "MetricName":"CPUUtilization",
 "Namespace":"AWS/EC2",
 "Statistic":"Average",
 "Period":"300",
 "EvaluationPeriods":"2",
 "Threshold":"90",
 "AlarmActions":[
 {"Ref":"WebServerScaleUpPolicy"}
],
 "Dimensions":[{
 "Name":"AutoScalingGroupName",
 "Value":{"Ref":"WebServerGroup" }
 }
],
 "ComparisonOperator":"GreaterThanThreshold"
}
},
"CPUAlarmLow":{
.
.
},

Auto Scaling Group: Finally, the Auto Scaling group itself is configured to
send messages to the SNS topic upon the launch and termination of EC2
instances:

"WebServerGroup":{
 "Type":"AWS::AutoScaling::AutoScalingGroup",
 "DependsOn":[
 "LaunchConfig","ElasticLoadBalancer"
],
 "Properties":{
 "AvailabilityZones" : [
 {"Fn::GetAtt" : ["HASubnet" , "AvailabilityZone"] },
 {"Fn::GetAtt" : ["PublicSubnet" , "AvailabilityZone"] }
],

Deploying to Production and Going Live Chapter 7

[268]

 "LaunchConfigurationName":{
 "Ref":"LaunchConfig"
 },
 "MinSize":"1",
 "MaxSize":"1",
 "LoadBalancerNames":[
 {"Ref":"ElasticLoadBalancer"}
],
 "VPCZoneIdentifier":[
 { "Ref" : "HASubnet" },
 { "Ref" : "PublicSubnet" }
],
 "NotificationConfiguration":{
 "TopicARN":{"Ref":"A1SNSInfraAlert"
 },
 "NotificationTypes":[
 "autoscaling:EC2_INSTANCE_LAUNCH",
 "autoscaling:EC2_INSTANCE_LAUNCH_ERROR",
 "autoscaling:EC2_INSTANCE_TERMINATE",
 "autoscaling:EC2_INSTANCE_TERMINATE_ERROR"
]
 }
 }
},

Centralized logging
When you move from a static environment to a dynamically scaled cloud-based
environment, you need to pay close attention to the way you store, capture, and analyze log
files generated by the OS and your application. As EC2 instances are instantiated and
deleted by the autoscaling group, dynamically storing the log files locally is not
recommended. Hence, there is a need for a centralized logging service to which all the
applications and OSs log their data to; this makes it very convenient to search, view,
analyze, and take action regarding the logs in real time from a centralized console.

You have the option to either rollout your own centralized logging infrastructure using the
open source ELK stack (Elasticsearch, Logstash, and Kibana), or subscribe to one of the
many third-party logging service providers. Since this a book is about AWS, we will work
with CloudWatch as the logging and monitoring service.

Deploying to Production and Going Live Chapter 7

[269]

Setting up CloudWatch
To enable logging from the EC2 instance to CloudWatch, a logging agent needs to be
installed on the EC2 instances. As an example, we will show you the logging related to a
Tomcat access log file. Other log files can be handled similarly. Ensure you install this agent
in your base AMI image:

Install the AWS command client library as described in Chapter 4, in the Scripting1.
Auto Scaling section.
The next step is to install the logging agent itself. Since our EC2 is based on2.
Ubuntu, the agent needs to be downloaded and installed on the EC2 instance:

Download the CloudWatch logging agent: 1.

wget
https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-ag
ent-setup.py

Install and configure the Cloudwatch agent. The –region command-2.
line parameter specifies the AWS region in which your current AWS
EC2 instances and infrastructure is running. The log file to push to
CloudWatch is defined step 4; make sure the filename exists:

sudo python ./awslogs-agent-setup.py --region --us-west-2
Launching interactive setup of CloudWatch Logs agent ...
Step 1 of 5: Installing pip ...DONE
Step 2 of 5: Downloading the latest CloudWatch Logs agent
bits ... DONE
Step 3 of 5: Configuring AWS CLI ...
AWS Access Key ID [None]:
AWS Secret Access Key [None]:
Default region name [us-west-2]:
Default output format [None]:
Step 4 of 5: Configuring the CloudWatch Logs Agent ...
Path of log file to upload [/var/log/syslog]:
/var/log/tomcat7/access_log.log
Destination Log Group name
[/var/log/tomcat7/access_log.log]:
Choose Log Stream name:
1. Use EC2 instance id.
2. Use hostname.
3. Custom.
Enter choice [1]: 1
Choose Log Event timestamp format:
1. %b %d %H:%M:%S (Dec 31 23:59:59)
2. %d/%b/%Y:%H:%M:%S (10/Oct/2000:13:55:36)

Deploying to Production and Going Live Chapter 7

[270]

3. %Y-%m-%d %H:%M:%S (2008-09-08 11:52:54)
4. Custom
Enter choice [1]: 3
Choose initial position of upload:
1. From start of file.
2. From end of file.
Enter choice [1]: 2
More log files to configure? [Y]: n

After configuring and installing the CloudWatch instance in your base AMI3.
image, start the logging agent:

sudo service awslogs start

From the CloudFormation web console, navigate to Logs; there will be an entry4.
for /var/log/tomcat7/access_log.log, which implies the log agent has been
installed and configured correctly.

Summary
In this chapter, we reviewed some of the strategies you can follow for deployment of your
cloud application. We emphasized the importance of automating your infrastructure and
setting up a DevOps pipeline. We followed this up with sections on setting up and
monitoring a cloud-based backup solution. We also included a brief section on going live
with your application on the cloud. Finally, we described deployment-related steps for our
sample application.

The next chapter allows you to using the methods from the chapters thus far to design an
end-to-end, AWS-based, Big Data application.

8
Designing a Big Data

Application
In this chapter, we will present the design considerations for big data applications using
AWS services. More specifically, we will explore AWS services and platforms such as
Kinesis, EMR, Apache Spark, SageMaker, and Glue that are often the key components of
such applications. Our focus will be on the best practices for using these AWS services in
various big data applications such as machine learning and streaming analytics
applications. Finally, in the hands-on exercise, we will create EMR-Spark clusters.

In this chapter, you will learn about the following:

Characteristics of a big data application
Analyzing streaming data with Amazon Kinesis
Best practices for building serverless big data applications
Best practices for distributed machine learning and predictive analytics on AWS
Using Amazon SageMaker for machine learning applications
Best practices for using Amazon EMR
Understanding the security options for Amazon EMR and serverless applications
Creating an EMR cluster

Designing a Big Data Application Chapter 8

[272]

Introducing big data applications
Big data applications require the ability to ingest and store massive amounts of structured
and unstructured data. We also need to be able access and/or process the data flexibly and
securely. Additionally, we would like to future proof our big data solution (design and
implementation) against rapidly evolving business use cases and technology.

There are three typical types of data-driven development:

Historical analysis and reporting supported by using services such as Amazon1.
Redshift, Amazon RDS, Amazon S3, and Amazon EMR
Real-time processing and dashboards supported by using services such as2.
Amazon Kinesis, Amazon EC2, and AWS Lambda
Intelligent applications supported by using services such as Amazon Deep3.
Learning AMI, Amazon machine learning, and Amazon SageMaker

Traditionally, batch processing has been used to process massive volumes of data such as
hourly server logs, generating weekly or monthly bills, daily website clickstream analysis,
and daily fraud reports. As machine learning applications are increasingly becoming
mainstream, such jobs have also included training machine learning models. However,
recently, there is significant shift towards real-time streaming applications.

Organizations want to use streaming data as the incoming data loses value over time. They
want to ingest data as it is generated and analyze it in real time to get insights, immediately.
Examples of real-time data include events from mobile apps, web clickstream, application
logs, IoT sensors, and so on. Stream processing may include computation of real-time
metrics, real-time spending alerts/caps, real-time clickstream analysis, real-time fraud
detection, and so on. For example, applications such as web analytics and leaderboards
ingest web application data, compute top 10 users and persist to feed live apps. The
continuous stream of data is typically processed over moving time windows or over a
number of events. Similarly, in IoT applications sensor data is ingested, and metrics such as
average temperature is computed every 10 seconds, and the time series analytic is then
persisted to a serving database.

The main components of a streaming application include:

Data producer: This continuously creates data and continuously writes the data
to a stream.
Streaming service: This durably stores data and provides temporary buffer for
data preparation/pre-processing. This service needs to support a very high
throughput.

Designing a Big Data Application Chapter 8

[273]

Data consumer: This continuously processes the data and also cleans, prepares,
and aggregates incoming data.

Real-time analytics requirements have components that ingest, transform, analyze, react,
and persist the event data. Such applications need to be durable, continuous, fast, reactive,
available, and reliable.

There are three common patterns for streaming applications:

Streaming ingest-transform-load: This delivers data to analytical tools faster and
cheaper
Continuous metric generation: This computes analytics as the data is generated
Actionable insights: This reacts to analytics based off of insights.

The next wave of business applications includes predictive analytics applications. Predictive
analytics is important because companies have been accumulating big data about
customers, product/services, and operations for many years now and big data technologies
have provided proven solutions to store and process this data. Companies are feeling an
increasing pressure to turn data into insights about trends, classifications, detect anomalies,
and provide feedback loops to improve their businesses. There is a strong desire to evolve
from backward-looking monthly or quarterly reports to real-time alerts, and now to predict
the future.

Enterprises want to answer customer-related, product-related, and business operations
related questions. For instance, customer predictions include: Which customers are likely to
be the most profitable? How much revenue should I expect this customer to generate?
Which customers are likely to churn? Among all of our customers, which are likely to
respond to a given offer? What’s the probability that a given customer will respond to a
given offer?

Similarly, product or service predictions typically include: what products should we offer
or develop? What items are likely to be purchased together? Business operations
predictions could include questions such as: are the metrics for a service nominal or
anomalous? Is a specific equipment likely to fail within a given time period?

Designing a Big Data Application Chapter 8

[274]

AWS components used in big data applications
AWS has managed service offerings to address typical requirements of big data
applications. The following is the list of requirements and some of the associated AWS
services that can be leveraged to address them:

Ingest and store: Kinesis Streams, Kinesis Firehose, and Amazon S3
Prepare and transform: AWS Lambda and AWS Glue
Analyze and reason: Kinesis Analytics and Amazon Athena
Machine learning: Amazon SageMaker
Access and user interface: Amazon QuickSight and third-party tools

Additionally, there are security-related AWS services, features, and facilities available to
ensure secure implementation of big data applications.

Analyzing streaming data with Amazon
Kinesis
Streaming data processing is continuous and is done in real-time. You are continuously
writing data to a streaming service such as Kinesis. Typically, operating on small-sized
events (say a 1 KB event), writing to a stream, aggregating that data, and then persisting to
Amazon S3.

Amazon Kinesis is made up of three services:

Amazon Kinesis Data Streams: This helps you to build custom applications that
process and analyze streaming data. You can build real-time applications with
framework of choice – Kinesis Analytics, Spark on EMR, custom code on EC2, or
custom code on Lambda. It is easy to administer, secure, and uses durable
storage.
Amazon Kinesis Data Analytics: This helps you to easily process and analyze
streaming data with standard SQL. You can build powerful real-time applications
such as continuous anomaly detection, continuous time-series analysis,
continuous filtering, aggregation, and enrichment. It is easy to use, fully
managed, and provides automatic elasticity.

Designing a Big Data Application Chapter 8

[275]

Amazon Kinesis Data Firehose: This helps you to easily load streaming data into
AWS. It requires zero-administration and provides seamless elasticity. It supports
direct-to-data store integration to Amazon S3, Amazon Redshift, and Amazon
ElasticSearch Service. Typically, if you have many small files, then you would
aggregate to larger files on S3 to optimize batch processing. It is serverless and
supports continuous data transformations, compression, encryption, and you can
use AWS Lambda to create a serverless ETL pipeline to get the data into AWS.

Best practices for serverless big data
applications
There is a massive shift toward serverless computing for big data and other applications on
AWS Cloud. The popularity of serverless stems from the huge advantages it provides in
terms of having no servers to provision or manage; it scales with usage and you never pay
for the idle time. Additionally, availability and fault tolerance are built-in.

Serverless nicely fits into big data platforms as you can flexibly mix and match serverless,
managed, and virtualized services. These services can be easily leveraged to rapidly ingest,
categorize, and discover your data, allow easy query and analysis of your data, transform
and load data, provide custom event-based handlers, and so on. Overall, a serverless
approach allows you to focus more on analytics / use cases and not on infrastructure or
servers.

A serverless strategy can be applied to almost all aspects of big data applications, including
data processing, data warehousing, reporting, real-time processing, predictive analytics,
and artificial intelligence.

Some examples of AWS serverless options include:

AWS Lambda (serverless compute) lets you run your code in the cloud. It is a
fully managed and highly available service that is triggered through an API or
state changes in your setup. It scales automatically to match the incoming event
rate. It provides support for code written in Node.js (JavaScript), Python, Java,
and C#. It is currently charged per 100 ms execution time.
Amazon Athena (serverless interactive query service) allows you to query
directly from Amazon S3 using ANSI SQL. It supports multiple data formats and
you pay per query.

Designing a Big Data Application Chapter 8

[276]

AWS Glue (serverless catalog and ETL/ELT service) helps crawl, discover, and
organize data. It is supports integration with managed and serverless analytics,
Job Authoring and Job Execution (serverless ETL). You pay for what you
consume.
Amazon Kinesis (serverless streaming) makes it easy to capture, deliver, and
process streams on AWS.

Best practices for using Amazon EMR
Amazon has made working with Hadoop a lot easier. You can launch an EMR cluster in
minutes for big data processing, machine learning, and real-time stream processing with the
Apache Hadoop ecosystem. You can use the Management Console or the command line to
start a few nodes or a thousand nodes with ease.

Like EC2, EMR pricing is now changed from pay per hour to pay per second. If you stop
your cluster—you stop paying immediately. This results in lower costs and you don’t have
to worry about the hourly boundary, anymore.

EMR makes a whole bunch of the latest versions of open source software available to you.
There are 19 open source projects, presently. New releases are made every 4 to 6 weeks so
latest versions of the open source projects are available. This is very useful especially for
rapidly evolving open source projects such as Apache Spark where each release contains
critical bug fixes and features. However, you are not forced to upgrade but a new release is
made available, if you choose to use it. With EMR, you can spin up a bunch of instances and
you could process massive volumes of data residing on S3 at a reasonable cost.

A variety of different cluster management options are supported, including YARN. You can
run HBase, Presto (low latency, distributed SQL engine), Spark, Tez, and a variety of
frontend tools such as ganglia, Zeppellin, notebooks, and SQL editors. Additionally,
connectors to a variety of different AWS services are also available, for example, you can
use Spark to load Redshift (using the Redshift connector, which under the hood uses
Redshift commands to get a good throughput). You can access DynamoDB for analytics
applications; use Sqoop to access relational data and so on.

Designing a Big Data Application Chapter 8

[277]

One particularly interesting connector is AWS Glue. AWS Glue comprises three main
components:

ETL service: This lets you drag things around to create serverless ETL pipelines
AWS Glue Data Catalog: This is a fully managed Hive metastore-compliant
service. Earlier, the systems ran an external Hive metastore database in RDS or
Aurora. This was great, if you shut down your cluster, all your metadata was
persisted so you didn’t have to recreate your tables with extra durability and
availability (in case something happened to your metastore with MySQL on the
master node). With Glue all that is fully managed. You have an intelligent
metastore—you don’t have to write DDL to create a table, you could just have
Glue crawl your data, infer what the schema is, and create those tables for you.
You can also have it add partitions. One thing that can be painful is to add
partitions—if you are constantly updating your Hive tables, you need a process
to kick-off to load that partition in—Glue catalog can do it for you. You can have
a variety of complex data types that it supports as well.
Crawlers: The crawlers let you the crawl data to infer the schema.

AWS Glue is a managed service, so you spend less time monitoring; as a fully managed
service, it is also responsible for replacing unhealthy nodes and auto-scaling. It is easy to
enable security options. It supports full customization and control, and you don’t have to
waste time creating and configuring the cluster. In most cases, the default settings are good
enough, but even if you wanted to change them or install custom components, you have
root access over all the boxes, so you can make any changes you need.

Understanding common EMR use cases
Using HBase for random access at a massive scale involves a lot of customers who are
running HBase with HDFS. Now there is support for HBase using S3 object store for HFiles.
Also, there is the ability to use Read Replica HBase cluster in another AZ. Shifting to S3 can
save you 50% or higher on storage costs. Instead of sizing the cluster for HDFS, they can
now size it for the amount of processing power required for the HBase Region Servers. The
S3 option is also good for load balancing and disaster recovery across AZs. As S3 is
available across a region, you don’t have to replicate the data twice, that is, you don’t need
two full HDFS clusters. Now you can set up a smaller cluster for the Read Replicas that
point to the same HFiles and you can drive the read traffic through there.

Designing a Big Data Application Chapter 8

[278]

Real-time and batch processing involves utilizing EMR; you can use Kinesis for pushing
data to Spark. Use Spark Streaming for real-time analytics or processing data on-the-fly and
then dump that data into S3. If you don’t have real-time processing use cases, then Kinesis
Firehose is a great alternative too. The data can be cataloged in the Glue Data Catalog and
then you can have the data accessible via a variety of different analytical engines. EMR
supports several analytical engines including Hive, Tez, and Spark. Once the data is in the
Data Catalog on S3, you can use Athena (serverless SQL queries), Glue ETL (serverless
ETL), and Redshift Spectrum.

Data exploration with Spark using Zeppelin or Jupyter notebook. This allows you to arm
your data scientists with a way to explore large amounts of data (instead of using one node,
now you can spread the data across the cluster). It also makes it easy to move it to
production.

There is a big rise in the use of Presto for ad hoc SQL queries (in combination with Athena).
They approach the same thing from two different angles. Presto gives you advanced
configurations and a way to build exactly what you need for your use case but you have to
deal with the cluster management versus Athena where you just go to the console and start
writing SQL. Now many BI tools support Presto as well for supporting low latency
dashboards. You can also do traditional batch processing workloads using Spark.

Deep learning with GPU instances is where you can launch GPU hardware for EMR.
There’s support for MxNet. You can do end-to-end data engineering work. Support for
TensorFlow is coming.

Typical ML projects implement a multi-step process, including ETL, feature engineering,
model training, model evaluation, model deployment, and model scoring and updates.
Such pipelines need to support batch model training and real-time ML model serving.
Using Apache Spark for implementing ML pipelines is very popular as it supports each step
in a ML pipeline, scales for small and large jobs, good ML libraries, and has an active user
base.

There are several options for deploying Spark on AWS. For example, you can use EC2 as it
can support for batch/streaming, integrates with tooling, spin up/down clusters,
larger/smaller clusters. Additionally, it also has support for different versions of Hadoop
and Spark. However, using EC2 for Spark deployment places a huge management burden
on us. Hence, EMR can be a simpler and better alternative here. It is simple to provision and
you can use a wizard (and then generate the commands for the command line from it, if
required). You can create tags for cost management and send logs to S3.

Designing a Big Data Application Chapter 8

[279]

Lowering EMR costs
If you are paying for Hadoop nodes that are not doing anything, then you are just burning
money. There are ways you can batch up your workloads. Take an inventory of the jobs you
have and tweak them to run in a batch mode and shutdown the cluster in-between those
times. You can separate out clusters with auto-scaling instead of sizing and running it for all
your workloads. You should shutdown the cluster when you can, to stop paying for it,
unnecessarily. You can use Amazon Linux AMI with preinstalled customizations for faster
cluster creation and use auto-scaling to minimize costs for long-running clusters.

Using Amazon EC2 Spot and Auto Scaling
Using spot instances is a great way to save money compared to using on-demand instances.
However, be more careful in a SLA-driven environment (where you cannot withstand any
failures). In most cases, the odds of a failure are pretty low, and Hadoop itself can handle
several node failures so that even if some nodes are taken away you may still be good—you
should run task nodes that don’t have data so as to not impact HDFS. But still, there might
be failures and you could lose a bunch of nodes and Spark may not be able to re-compute a
DataFrame. Having the logic to just kill the cluster and create a new one on-demand for that
one job is more expensive but over a period of time, the savings still make it a worthwhile
approach. Templatize the architecture so that you can quickly recover if something
happens, is doable and recommended when you are using spot instances, and you have
workloads that are SLA bound.

Using instance fleets is similar to using spot fleets; however, you do not specify the instance
to use. You will specify a list of instance types and Amazon will do the best based on the
availability of instances to give some combination of instances you want. This solves the
following three problems:

Provision across instance types. When requesting instance types sometimes they
are not available, then AWS will try to get the capacity you need based on
instance types available from the list of instance types you specify. You give four
or five different choices and AWS will try to provision the end capacity you need.
You can also specify the list of AZs and EMR will select the optimal EC2 AZ to
launch the cluster in.
If spot instances are not available and I still need to run the job, then the on-
demand feature can be used. For example, if I can’t get all the instances I need for
30 minutes, then switch to on-demand.

Designing a Big Data Application Chapter 8

[280]

EMR auto-scaling—whether for long running jobs or even for transient workloads to some
degree—uses some of the features of application auto-scaling under the hood, but AWS has
stitched things together for you. You need to specify what you need and AWS does the rest.
(No need to specify CloudWatch metrics yourself.) You can use a variety of different
CloudWatch metrics such as YARN memory or the ratio of containers pending to containers
active, which is a kind of a proxy for if you gave me another node do you have any YARN
containers to put on it. So give me another node.

There are a bunch of CloudWatch metrics that can be used, but also use custom
metrics—for example, there is currently no metric for aggregate CPU on the cluster, but if
you have installed Ganglia, then there is—so pump that to CloudWatch and scale based on
that.

Auto-scaling points involves EMR scales-in at YARN task completion. It selectively
removes nodes with no running tasks (that is, a YARN container);
yarn.resourcemanager.decommissioning.timeout(default is one hour). If a particular
node is running a YARN container then it will wait for this value (1 hour), and if no other
node is free then it will take this node and kill the YARN container. If you have a use case
that involves caching a large Spark DataFrame and all the YARN containers are required,
then you can set this parameter to an arbitrary high value to prevent a node from being
taken away while it is in use. Ultimately, the configuration parameter settings depend on
your specific use case.

Best practices for distributed machine
learning and predictive analytics
Enterprise predictive analytics applications need to be highly scalable and need to support
agility in feature development and deployments. There are a plethora of open source tools
and solutions available. However, using managed services eliminates infrastructure-related
heavy lifting and leads to agility.

Designing a Big Data Application Chapter 8

[281]

Such applications use a variety of supporting AWS services, including the following:

Amazon S3: Store anything (object store), Scalable/Elastic, High durability,
effectively infinite inbound bandwidth, extremely low cost, and data layer for
virtually all AWS services. Amazon S3 is a great choice for cloud-based data lake
because of durability (designed for 11 9s durability), availability (designed for
99.99% availability), high performance (features such as multiple uploads, Range
GET), ease of use (supports simple, REST APIs, AWS SDKs, read-after-create
consistency, event notification, and lifecycle policies), scalability (save as much
data as you need, scale storage and compute independently, no minimum usage
commitments), and is integrated with other services such as Amazon EMR,
Amazon Redshift, and Amazon DynamoDB.
AWS Glue: This provides a managed ETL engine, and a Job scheduler. It is built
on Apache Spark and is integrated with S3, RDS, Redshift, and any JDBC data
store.
Glue Data Catalog: This manages table metadata through a Hive Metastore API
or Hive SQL, and is supported by tools such as Hive, Presto, and Spark. There are
several extended services available to support additional functionality such as
search metadata for data discovery, connection information for JDBC URLs and
credentials, classification for identifying and parsing files, versioning of table
metadata as schemas evolve and other metadata are updated. You can populate
the catalog using Hive DDL, bulk import, or automatically through crawlers.
Glue Crawlers: The Glue crawlers are used to auto-populate data catalog. They
come with built-in classifiers that detect the file type and extract the record
schema (record structures and data types). It can also auto-detect Hive-style
partitions and group similar files into one table. You can set up a schedule
for running the crawlers. They are implemented as a serverless service so you
only pay when the crawlers are actually run.
Amazon EMR: This includes scalable Hadoop clusters as a service. The service
includes Hadoop, Hive, Spark, Presto, HBase, etc. distributions. It is easy to use
and a fully managed service. You have a choice of using On-demand, reserved,
or spot instances for your cluster. Storage options include HDFS, S3, and
Amazon EBS filesystems. It is integrated with AWS Glue, and you can configure
end-to-end security for the data-in-flight and data-at-rest.

Designing a Big Data Application Chapter 8

[282]

Using Amazon SageMaker for machine learning
Typically, the machine learning process comprises the following steps:

Data wrangling: This involves setting up and managing notebook environments.
This will help you to get data to notebooks securely.
Experimentation: This involves setting up and managing clusters. This will help
you scale/distribute ML algorithms.
Deployment: This involves setting up and managing inference clusters. This will
help you manage and autoscale inference APIs with testing, versioning, and
monitoring.

The preceding cycle can take as long as 6 to 18 months. However, given the potential of
machine learning and AI to empower and improve businesses, the effort is often
worthwhile. Challenges in large-scale machine learning include storing and processing lots
of data, model selection, and production deployments and model updates. Hyperparameter
tuning is expensive and incremental training is a problem (significant repetitious training
on data already trained previously). As the amount of investment required goes up with
increasing data/model size, businesses limit the size of the data used for training. This
results in wasted opportunity due to unused data (as the data is incrementally dropped
from the training set with time).

Amazon SageMaker aims to make the machine learning process easier. It is a managed
service that provides the quickest and easiest way for data scientists and developers to get
ML models from idea to production. It provides an end-to-end machine learning platform
by supporting data exploration, model training, and hosting with minimal setup, and you
pay by the second.

Amazon SageMaker requires minimal setup for data exploration and resizable as per your
needs. This involves common tools pre-installed with easy access to your data sources.
There are no servers to manage and a modular architecture lets you use only what you
need. It has a pay as you go model and a free trial is available to you get started quickly.

Amazon optimized algorithms can be applied for distributed training using the AWS SDK,
or Apache Spark SageMaker Estimators, deep learning scripts (using TensorFlow and
Gluon), or your custom algorithm Docker image. Algorithms designed for huge datasets:
Streaming datasets, for cheaper training. Train faster in a single pass. Greater reliability on
extremely large datasets.

Designing a Big Data Application Chapter 8

[283]

Choice of several ML algorithms include XGBoost, Factorization Machines, and Learn
Linear for classification and regression, K-means and PCA for clustering and
dimensionality reduction, image classification with convolutional neural networks, LDA,
and NTM for topic modeling, and seq2seq for translation—with more algorithms to follow.

Amazon SageMaker makes a whole bunch of machine learning tasks ranging from the
management of notebook environments to easy data exploration in Jupyter notebooks. It
also supports one-step deployment to quickly deploy ML models in production. It provides
a low latency, high throughput, and high-reliability service.

You can get started using Amazon SageMaker with notebook samples. You will need
to modify the code to access your own data sources.

Understanding Amazon SageMaker algorithms
and features
In this section, we present some of the key algorithm design choices and features in
Amazon SageMaker that make them an excellent option for your machine learning
applications. The following are some of its key features:

Based on streaming: Amazon SageMaker algorithms are all based on streaming
(data points seen only once). Based on the streaming data, a state (of fixed size) is
set; so it does not matter how much data you have streamed (the data structure
used is not going to grow in size). Hence, the memory footprint of the algorithm
is going to be fixed and the run time/costs remain linear to the size of the data.
Support for incremental training: These algorithms are designed to support
incremental training. For example, if you are training on 2 days' worth of data,
then you will have to train on day 1 and 2 data, and later on day 2 and day 3 data.
In such a situation, with these algorithms, you can serialize and persist the state
after days 1 and 2. When day 3 data is available, you can deserialize the state (at
this stage you are exactly at the end of day 2), and then you can proceed with just
processing day 3 data. Hence, you save on compute because you don’t have to
retrain on day 2 data. Another significant advantage is that you no longer have to
choose how far back you want to go for including the data in your training set. In
our example, you end up effectively training on all of the data from days 1, 2, and
3. So, overall it becomes faster, cheaper, and more accurate.
Support for GPUs: All the algorithms work on both CPU and GPU.

Designing a Big Data Application Chapter 8

[284]

Distributed architecture: It is linearly scalable. If each node has one third of the
data, then it will run in one third of the time. As the states for each node may be
different after the training is completed, there is also a shared state (a global state
that all these nodes share). The local state is synchronized with the global state.
Support for efficient model selection: Amazon Kinesis streams can be consumed
as input streams. This allows you to do post training processing (and not only
pretraining) to explore different models. For model selection, hyperparameter
tuning can be done based on the state to generate multiple models instead of
retraining on the same data.
Support for abstraction and containerization: You can build on a desktop (using
CPU) and then deploy in a distributed GPU environment. These features also
give you superior production readiness. The deployment can run the same
solution on 1 GB or 1 TB of data.

Amazon SageMaker algorithms can be used from the command line (specify the algorithm,
input data, and hardware), and also from the Amazon SageMaker Notebooks. You can also
deploy directly from the notebook itself as shown in Chapter 9, Implementing a Big Data
Application.

Security overview for big data applications
In this section, we will shift our focus to AWS big data application security features. More
specifically, we will discuss the features and options for securing EMR clusters and
serverless applications.

Securing the EMR cluster
In this section, we provide a quick overview of EMR security, including encryption,
authentication, and authorization.

Encryption
EMR supports end-to-end encryption for a variety of different frameworks. You can
configure all this in a couple of clicks. You can do S3 server-side or client-side encryption,
encrypt all the local disks of your cluster so any executor spills or HDFS blocks getting
written get encrypted on the local disk filesystem. You can also encrypt Spark, Tez,
MapReduce, HBase, Hive, Presto, and Pig for all the data blocks in flight.

Designing a Big Data Application Chapter 8

[285]

For more details on encrypting data-at-rest and data-in-transit, refer to
AWS
documentation: https://docs.aws.amazon.com/emr/latest/ManagementG
uide/emr-data-encryption.html.

Authentication
EMR step (EMR API) is a straightforward way using AWS credentials to authenticate
users. LDAP support is available for HiveServer2, Presto Coordinator, Spark Thrift Server,
Hue Server, and Zeppelin Server. For SSH with EC2 key pair, the user ID is hadoop (super
user).

Authentication with Kerberos involves using a secret-key cryptography to provide strong
authentication so that passwords or other credentials aren't sent over the network in an
unencrypted format. You can do cross-realm with AD and have all the corporate users SSH
in as themselves. This is useful for auditing and governance purposes. You can easily
launch a large cluster that is fully Kerberosized with KDC on the master node with service
principals for all cluster nodes. So, if you want to do a one-way trust with your AD, you can
SSH in as yourself.

For more details on using Kerberos authentication, refer to AWS
documentation: https:/ /docs. aws.amazon. com/ emr/latest/
ManagementGuide/ emr- kerberos. html.

Authorization
You could be storage-based using ACLs or permissions on storage level to determine
whether you can do the job or not. HDFS supports ACLs and you can configure it.
EMRFS/S3 (S3 access control). EMRFS is storage-based, fine-grained authorization useful in
shared cluster scenario where each user assumes a different IAM role to limit what they can
or can't access on S3. You can map an IAM role to users, groups, or S3 prefixes.

For more details on using EMFRS authorization for data on S3, refer to
AWS documentation: https:/ /docs. aws. amazon. com/emr/ latest/
ManagementGuide/ emr- emrfs- authz. html.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-authz.html

Designing a Big Data Application Chapter 8

[286]

HiveServer2 and Presto support SQL standards based access control. For example, a given
user can access or not access a specific table. HBase supports cell level access control. With
Kerberos, you can authenticate users to manage access to YARN queues. At EMR cluster
level ,you can use IAM and tags to implement access control. Finally, you can use Apache
Ranger (essentially a policy engine for Hadoop) on edge node (using CloudFormation).

Securing serverless applications
We want to prevent unauthorized access and use of information. Additionally, we want to
ensure that the application or service works as intended and only as intended. Another
advantage of serverless is that we are working in a SaaS model where security is almost
entirely the cloud provider's responsibility (in the shared responsibility model).

For more details, refer to Securing Serverless Applications - Step-by-
Step, Mark Nunnikhoven, https:/ / www.youtube. com/ watch? v=
B3j4xql7we0.

Securing serverless applications comprise three components: AWS services, application
code, and data flows.

The following are the steps you need to perform for serverless security:

What data is involved in the app? Map out the data involved in the application to1.
understand your risk. For example, PII data, credit card details, and other such
sensitive data and the code that processes it.
What is the value of that data? After mapping the data involved in the2.
application you should assign a value to it based on the risk or sensitivity of data.
What services access the data? Identify each of the services and how they can3.
configure them. List the services used and assign a risk score to them.
Verify compliance eligibility. For example, if there are payments involved in your4.
application, then the credit card information is sensitive and comes under PCI
compliance. AWS has certified services for processing this data but remember to
include supporting services such as AWS IAM and AWS KMS to your list.
Configure each service appropriately. S3 and IAM defaults are nonpublic and5.
deny everything, which is a good thing. You need to understand the
configuration parameters and choices for each service.
Add automated tests for each configuration. Test it after you have configured the6.
services to ensure what you set up is exactly what is running in production. It's
good practice to test constantly—re-run all the tests after any changes.

https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0
https://www.youtube.com/watch?v=B3j4xql7we0

Designing a Big Data Application Chapter 8

[287]

Write better code. Code quality is a problem and we can do better from a code7.
perspective. Ensure that the quality of code is improving over time with more
experience.
Reduce and verify dependencies. Be careful about imports (dependencies include8.
code written by different people at different skill levels).
Add automated tests for the code. Test the code thoroughly. Creating automated9.
test suites will help ensure the process is run as frequently as necessary with
minimum effort.
Security test or profile the code. Look for known issues in the code. There are10.
many static analysis tools available, including the open source ones.
Monitor the flow of information. You can monitor the flow of information (after11.
the mapping is done). AWS X-Ray can be used to help analyze and debug the
distributed applications. Getting to know how information is flowing in your
application can also help with configuring the security for your applications. You
can leverage Amazon CloudWatch to set up a trigger that sends the events to
AWS Lambda. You can then create a whitelist of known good events/service
calling which can itself be a serverless application. If a bad event is received, then
you can send appropriate alerts. You can also leverage Amazon Macie to
automatically discover, classify, and protect sensitive data in AWS. Amazon
Macie recognizes sensitive data such as personally identifiable information (PII),
and provides you with dashboards and alerts with respect to how this data is
being accessed or moved. Currently, Amazon Macie supports S3 storage only.
You can also analyze CloudTrail data for anomalies and configuration changes,
for example, changing a S3 bucket access from private to public will raise an
alert.

Understanding serverless application authentication
and authorization
Learn how to implement identity management for your serverless apps using Amazon
Cognito User Pools, Amazon Cognito Federated identities, Amazon API Gateway, AWS
Lambda, and AWS Identity and Access Management (IAM).

Designing a Big Data Application Chapter 8

[288]

Sign-up and sign-in. How do you store credentials? Never store passwords in plaintext. It is
vulnerable to rogue employees. A hacked DB can result in all the stored passwords being
compromised. The use of hashed passwords does not solve problem because of MD5/SHA1
collisions, the use of Rainbow tables (for reversing cryptographic hash functions, usually
used for cracking password hashes), and dictionary and brute-force attacks (GPUs are
capable of computing billions of hashes/second). A better approach is to salt hash these
passwords by incorporate app-specific salt and random user-specific salt or use algorithm
with a configurable number of iterations to slow down brute-force attacks. But what if you
did not want to transfer the password over the wire or even save it in the database. In such
cases you can use Secure Remote Password (SRP) protocol or Verifier-based protocol. Using
these protocols ensures that passwords never have to travel over the wire and they are
resistant to several attack vectors. They ensure Perfect Forward Secrecy (PFS) property for
secure communications in which compromises of long-term keys do not compromise past
session keys

So now you have taken care of Secure Password handling requirement; what about other
requirements such as multifactor authentication, enforcing password policies, and
encrypting all data server-side. On top of it, what about user flows such as registration,
verification of email/phone number, secure sign-in, forgot password, change password, and
sign-out functionality. Thankfully, there is an AWS service for it—Amazon Cognito. More
specifically, Amazon Cognito User Pools (managed user directory).

A typical set of steps from a mobile app to Amazon Cognito User Pools include the
following:

A register request is sent from the mobile app1.
A verification SMS/email is sent by Cognito2.
The user confirms the registration3.
Cognito responds with a successful registration message4.
An authenticate (via SRP) request is sent from the mobile app5.
Cognito returns the requisite JWT token (JSON Web tokens)6.

An alternate flow after successful registration is also possible if you want to implement
CAPTCHA or MFA for Authentication (via SRP). You can define a custom authentication
challenge. You can hook in a lambda function into the flow. Here, the steps after a
successful registration will include the following:

An authenticate (via SRP) request is sent from the mobile app1.
A custom challenge (CAPTCHA, Custom 2FA) is presented by Cognito2.

Designing a Big Data Application Chapter 8

[289]

A challenge response is sent by the mobile app (with a Lambda function3.
triggered to verify the authentication challenge response)
Cognito returns the requisite JWT token4.

In fact, you can hook in Lambda triggers at each of the preceding steps, as required.

The JWT token consists of a header, payload, and a signature (all three together as a Base64
encoded blob of text makes up a JWT token).

You get three types of tokens from Cognito, which are as follows:

Access token: This provides access or programmatic API interactions.
Identity token: This can be used for downstream pseudo-authentication. You can
use this token to dynamically change the experience of the user by just reading
the token.
Refresh token: This token is required because the Access and Identity tokens
from Cognito are only good for one hour when issued. But a refresh token can be
valid for as long as 30 days. You can use the refresh token to get a new access or
identity token.

With Cognito User Pools, a user will be able to register, sign-in, and sign-out. Now, if the
user needs to access AWS resources, for example, each user has a profile and they want
their profile picture. We want to take advantage of Amazon S3 for that. To give them secure
fine-grained access to S3, we need Amazon Cognito Federated Identities. This service
allows you to exchange tokens from User Pools for AWS native credentials for federating
access to AWS resources. Amazon Cognito Federated Identities calls AWS Security Token
Service (STS), which is essentially a cloud-based token vending machine.

Prior to December 2016, Amazon Cognito Federated Identities had unauthenticated and
authenticated user roles. Now, for fine-grained, role-based access control, you have two
more features for authenticated users Choose a role from rule and Choose a role from token.
Using the Cognito groups feature (for Choose role from token), you can specify an IAM role
for each group and the users of that group will have the associated permissions. Note that a
user can have only one IAM role active at a time.

Designing a Big Data Application Chapter 8

[290]

You’ve set up the basics. Now, let's look at authorization requirements of your serverless
application. If your application uses API Gateway, Lambda, and DynamoDB, then you can
actually offload all of your authorization requirements to the API Gateway.

API Gateway supports three types of authorizations, which are as follows:

Amazon Cognito User Pools using User Pools Authorizers. (We cannot
differentiate admin user from other users; hence, we will need more fine-grained
authorization.)
Amazon Cognito Federated Identities using AWS IAM authorization. This is the
most common option used by most businesses. It provides fine-grained access
control.
Custom Identity Providers using Custom Authorizers.

For more details, refer to Serverless Authentication and Authorization, Justin
Pirtle and Vladimir
Budilov, https://www.youtube.com/watch?v=B3j4xql7we0.

Configuring and using EMR-Spark clusters
In this section, we will present two simple examples of EMR clusters suitable for basic
Spark development. In the first example, we will spin up an EMR cluster, start the Spark
shell, and do some Spark-Scala work. In the second example, we will spin up an EMR
cluster and run a simple Spark program.

Follow the step-by-step instructions specified next for this hands-on exercise:

Log in to the AWS Management Console and open the Amazon EMR console and1.
click on the Create cluster button:

https://www.youtube.com/watch?v=VZqG7HjT2AQ
https://www.youtube.com/watch?v=B3j4xql7we0

Designing a Big Data Application Chapter 8

[291]

We will use the Create Cluster - Quick Options for selecting the options for our2.
cluster. Specify a name for the cluster
(FirstEMRSparkClusterUsingQuickOptions). Choose Launch mode as
Cluster:

In the Software configuration section, ensure you have selected the latest
available version of EMR and select the Spark option:

Leave the defaults for Hardware configuration unchanged. We will be
creating a three-node cluster with suggested instance types:

Designing a Big Data Application Chapter 8

[292]

Select your EC2 key pair from the dropdown list. Click on the Create
cluster button:

It can take a few minutes for the cluster to start up. You should see the following3.
screen with a Starting message displayed (in green):

After the cluster is up and running, the Starting message changes to Waiting:4.

Designing a Big Data Application Chapter 8

[293]

You can click on the AWS CLI export button to capture the EMR create cluster5.
command that you can use to create this cluster (in the future) from the command
line in one step:

You can view the nodes and their status by clicking on the Hardware tab:6.

You can view the defined jobs or steps by clicking on the Steps tab:7.

Designing a Big Data Application Chapter 8

[294]

Click on the Clusters link on the left-side menu for a listing of your clusters and8.
their status:

You can also list all the EMR clusters using AWS CLI command. Note the ID9.
value for the cluster:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws emr list-
clusters

Go to the IAM console and edit the default security group inbound rules to10.
include port 22. SSH into the EMR Master node as shown here (copy the public
DNS for the master node from the Summary tab):

ssh -i ./AWSBook2EdKeyPair.pem hadoop@ec2-34-216-77-144.us-
west-2.compute.amazonaws.com

Designing a Big Data Application Chapter 8

[295]

You can display the details of your cluster using the describe-cluster command11.
and specifying the cluster ID (copy the cluster ID value from the EMR Clusters
console). The output provides cluster-level details such as status, hardware and
software configuration, VPC settings, bootstrap actions, and instance groups.

[hadoop@ip-172-31-23-43 ~]$ aws emr describe-cluster --cluster-id
j-1O96RAZBTX0VI

{
 "Cluster": {
 "Status": {
 "Timeline": {
 "ReadyDateTime": 1517139426.457,
 "CreationDateTime": 1517139044.608
 },
 "State": "WAITING",
 "StateChangeReason": {
 "Message": "Cluster ready after last step
completed."
 }
 },
 "Ec2InstanceAttributes": {
 "EmrManagedMasterSecurityGroup": "sg-c086ddbc",
 "RequestedEc2AvailabilityZones": [],
 "RequestedEc2SubnetIds": [
 "subnet-3305a255"
],
 "Ec2SubnetId": "subnet-3305a255",
 "IamInstanceProfile": "EMR_EC2_DefaultRole",
 "Ec2KeyName": "AWSBook2EdKeyPair",
 "Ec2AvailabilityZone": "us-west-2a",
 "EmrManagedSlaveSecurityGroup": "sg-8482d9f8"
 },
 "Name": "FirstEMRSparkClusterUsingQuickOptions",
 "ServiceRole": "EMR_DefaultRole",
 "Tags": [],
 "TerminationProtected": false,
 "ReleaseLabel": "emr-5.11.1",
 "NormalizedInstanceHours": 0,
 "InstanceCollectionType": "INSTANCE_GROUP",
 "Applications": [
 {
 "Version": "3.7.2",
 "Name": "Ganglia"
 },
 {
 "Version": "2.2.1",

Designing a Big Data Application Chapter 8

[296]

 "Name": "Spark"
 },
 {
 "Version": "0.7.3",
 "Name": "Zeppelin"
 }
],
 "KerberosAttributes": {},
 "MasterPublicDnsName": "ec2-34-216-77-144.us-
west-2.compute.amazonaws.com",
 "ScaleDownBehavior": "TERMINATE_AT_TASK_COMPLETION",
 "InstanceGroups": [
 {
 "RequestedInstanceCount": 2,
 "Status": {
 "Timeline": {
 "ReadyDateTime": 1517139426.484,
 "CreationDateTime": 1517139044.625
 },
 "State": "RUNNING",
 "StateChangeReason": {
 "Message": ""
 }
 },
 "Name": "Core Instance Group",
 "InstanceGroupType": "CORE",
 "EbsBlockDevices": [],
 "ShrinkPolicy": {},
 "Id": "ig-2BEMVHG1BGSXT",
 "Configurations": [],
 "InstanceType": "m3.xlarge",
 "Market": "ON_DEMAND",
 "RunningInstanceCount": 2
 },
 {
 "RequestedInstanceCount": 1,
 "Status": {
 "Timeline": {
 "ReadyDateTime": 1517139395.559,
 "CreationDateTime": 1517139044.624
 },
 "State": "RUNNING",
 "StateChangeReason": {
 "Message": ""
 }
 },
 "Name": "Master Instance Group",
 "InstanceGroupType": "MASTER",

Designing a Big Data Application Chapter 8

[297]

 "EbsBlockDevices": [],
 "ShrinkPolicy": {},
 "Id": "ig-3VB29AP5DG07X",
 "Configurations": [],
 "InstanceType": "m3.xlarge",
 "Market": "ON_DEMAND",
 "RunningInstanceCount": 1
 }
],
 "VisibleToAllUsers": true,
 "BootstrapActions": [],
 "LogUri": "s3n://aws-logs-450394462648-us-
west-2/elasticmapreduce/",
 "AutoTerminate": false,
 "Id": "j-1O96RAZBTX0VI",
 "Configurations": [
 {
 "Properties": {
 "maximizeResourceAllocation": "true"
 },
 "Classification": "spark"
 }
]
 }
}

You can start the Spark shell as shown here:12.

[hadoop@ip-172-31-23-43 ~]$ spark-shell

Designing a Big Data Application Chapter 8

[298]

For illustration purposes, we will show a few processing steps in the Spark shell13.
(using Scala). First, download a book (in the .txt format) from: http:/ /www.
gutenberg. org/ ebooks/ 35688. We will use the downloaded file as input. Go to
the S3 console to create an S3 bucket. Specify the Bucket name (in our example,
we have named it aurobindo-book). Click on the Next button:

http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688
http://www.gutenberg.org/ebooks/35688

Designing a Big Data Application Chapter 8

[299]

Leave the default selections unchanged and click on the Next button:14.

Designing a Big Data Application Chapter 8

[300]

Review the Bucket parameters and click on the Create bucket button:15.

You should see the newly created S3 bucket listed on the S3 console as shown in 16.
the following screenshot:

Upload the input file to the newly created S3 bucket as shown here:17.

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws s3 mv
pg35688.txt s3://aurobindo-book/aliceinwonderland.txt

Designing a Big Data Application Chapter 8

[301]

Go to the specific S3 bucket's contents to see the file listed:18.

Switch back to the Spark shell. Read the input file into a Spark RDD (Resilient19.
Distributed Dataset) and display the first five lines (in the RDD) as shown next:

scala> val fileRDD = sc.textFile("s3://aurobindo-
book/aliceinwonderland.txt")

scala> fileRDD.take(5).foreach(println)
The Project Gutenberg EBook of Alice in Wonderland, by Alice
Gerstenberg
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included

The logic used in the following code basically computes the word count for all20.
the words in the book:

scala> val counts = fileRDD.flatMap(line =>
line.toLowerCase().replace(".", " ").replace(",", " ").split("
")).map(word => (word, 1L)).reduceByKey(_ + _)

We display the results for 10 words as shown here:21.

scala> counts.take(10).foreach(println)
 (goals,1)
 (brother,1)
 (lessons;,1)
 (dashes,3)
 (alice,369)
 (therefore,1)
 (rate,1)
 (kettles,1)
 (hay,3)
 (_picked_,1)

Designing a Big Data Application Chapter 8

[302]

Next, we sort the list and show the top 10 words and their count:22.

scala> val sorted_counts = counts.collect().sortBy(wc => -wc._2)

scala> sorted_counts.take(10).foreach(println)
 (,4969)
 (the,834)
 (and,459)
 (you,441)
 (to,398)
 (a,386)
 (of,381)
 (alice,369)
 (i,328)
 (it,236)

We can store the sorted results in an S3 bucket as shown here:23.

scala>
sc.parallelize(sorted_counts).saveAsTextFile("s3://aurobindo-
book/wordcount-alice-in-wonderland")

Finally, we go back to the EMR console and terminate the cluster (by clicking on24.
the Terminate button).

You should see a terminating message temporarily on the console. After a few25.
minutes, the cluster is terminated:

Designing a Big Data Application Chapter 8

[303]

In our second example, we create an EMR cluster as we did in the first example. We want to
get comfortable spinning up cluster, perform the computations required, and terminate the
cluster immediately after.

Use your favorite editor to create a Spark Python program (containing the1.
following code) and name it wordcount.py. Upload the program to a S3 bucket:

from __future__ import print_function
from pyspark import SparkContext
import sys

if __name__ == "__main__":
 sc = SparkContext(appName="WordCount")
 text_file = sc.textFile(sys.argv[1])

Compute the word count
counts = text_file.flatMap(lambda line: line.split(" ")).map(lambda
word: (word, 1)).reduceByKey(lambda a, b: a + b)

#Save the results to S3
 counts.saveAsTextFile(sys.argv[2])

 sc.stop()

From the EMR console, create a new EMR cluster and name it2.
MSecondEMRSparkClusterUsingQuickOptions:

Designing a Big Data Application Chapter 8

[304]

Choose Spark in the Software configuration section choose Application
options as shown here:

Choose the default selections for Hardware configuration as shown:

Select the EC2 key pair as shown:

Designing a Big Data Application Chapter 8

[305]

List all the EMR clusters using AWS CLI command. Note the ID value for the3.
cluster:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws emr list-
clusters --active

{ "Clusters": [
 {
 "Status": {
 "Timeline": {
 "ReadyDateTime": 1517146171.077,
 "CreationDateTime": 1517145843.445
 },
 "State": "WAITING",
 "StateChangeReason": {
 "Message": "Cluster ready after last step
failed."
 }
 },
 "NormalizedInstanceHours": 96,
 "Id": "j-2996LIDHV5QLJ",
 "Name": "SecondEMRSparkClusterUsingQuickOptions"
 }
]
}

After your cluster is up and running, click on the Add step button (from the Steps3.
tab):

Specify the parameters in the Add step screen to include the step type to be Spark4.
application, give a name for the application, choose Cluster as the Deploy mode
parameter, specify the location of the wordcount.py program on
S3 (s3://aurobindo-book/wordcount.py) , and specify the input and output S3
buckets as arguments to the program as shown here. Then, click on the Add
button:

aws emr add-steps --cluster-id j-2996LIDHV5QLJ --steps
Type=spark,Name=SparkWordCountApp,Args=[--deploy-mode,cluster,--
master,yarn,--
conf,spark.yarn.submit.waitAppCompletion=false,s3://aurobindo-
book/wordcount.py,s3://aurobindo-

Designing a Big Data Application Chapter 8

[306]

book/aliceinwonderland.txt,s3://aurobindo-
book/pywordcount],ActionOnFailure=CONTINUE
{
 "StepIds": [
 "s-2R55949CWV0KH"
]
}

You should see the newly created step in the Steps tab on the Clusters console.5.
The Status field will change from Pending to Running to Completed:

Go to the S3 console to check the contents of the output. Click on the6.
pywordcount bucket (output S3 bucket), download one of the files and view the
contents downloaded file:

(,4969)
(the,834)
(and,459)
(you,441)
(to,398)
(a,386)
(of,381)
(alice,369)
(i,328)
(it,236)
(in,217)
(_],208)
(queen,164)
(with,142)
(is,120)
(that,118)
...
(there,30)
(think,30)
(up,30)
(said,29)
(did,29)

Designing a Big Data Application Chapter 8

[307]

(down,28)
(gutenberg,28)
(been,28)
(never,28)
(time,28)
(way,28)

Apache Spark provides browser-based UIs for its jobs. In order to enable the7.
Spark UI, click on the Enable Web Connection link (in the Summary tab) as
shown here:

8. You should see the following screen with instructions of enabling Spark UI.

Designing a Big Data Application Chapter 8

[308]

For more details on enabling Spark Web UIs, refer to the AWS
documentation: https:/ /docs. aws.amazon. com/ emr/latest/
ReleaseGuide/ emr- spark- history. html

Summary
In this chapter, we shifted our focus to designing big data applications on AWS. We
explored the best practices for using EMR, designing streaming applications with Amazon
Kinesis, serverless applications, machine learning, and predictive analytics applications
using Amazon SageMaker.

In the next chapter, we will focus on the hands-on implementation of big data applications
using AWS services such as Glue, Lambda, Kinesis, and SageMaker.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-history.html

9
Implementing a Big Data

Application
In this chapter, we will focus on the hands-on implementation of big data applications
using AWS services. More specifically, we will implement typical use cases for ETL,
serverless computing, streaming data, and machine learning using AWS services such as
Kinesis, EMR, Apache Spark, SageMaker, and Glue.

In this chapter, we will cover the following:

Setting up an Amazon Kinesis Stream
Creating an AWS Lambda function
Using Amazon Kinesis Firehose
Using AWS Glue and Amazon Athena
Using Amazon SageMaker

Implementing a Big Data Application Chapter 9

[310]

Setting up an Amazon Kinesis Stream
In this section, we will implement a Kinesis Stream and familiarize ourselves with a few
useful Kinesis CLI commands.

Log into the AWS Management Console and go to Amazon Kinesis Console.1.
Click on the Get started button:

Click on the Create data stream button on the Get started with Amazon Kinesis2.
screen:

Implementing a Big Data Application Chapter 9

[311]

Specify a name for the Kinesis stream as KinesisTestStream :3.

Implementing a Big Data Application Chapter 9

[312]

Specify the Number of shards as 1. Click on the Create Kinesis stream button:

You should temporarily see the Status as CREATING, as shown in the following4.
screenshot:

After the stream is created, you should see a success message, as shown in the5.
following screenshot:

The Status of the Kinesis stream will change to ACTIVE.

Implementing a Big Data Application Chapter 9

[313]

Select the Kinesis stream and then click on Details from the Actions menu:6.

View the details of the Kinesis stream you just created in the Details tab:7.

Execute the describe-stream command to display the details of the Kinesis8.
stream:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
describe-stream --stream-name KinesisTestStream

You can list all your Kinesis streams with the list-streams command:9.

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
list-streams

Implementing a Big Data Application Chapter 9

[314]

Insert a test record with the put-record command:10.

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
put-record --stream-name KinesisTestStream --partition-key 123 --
data "Test Event Record"

Use the get-shard-iterator to get the Shard Iterator and copy its value:11.

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
get-shard-iterator --shard-id shardId-000000000000 --shard-
iterator-type TRIM_HORIZON --stream-name KinesisTestStream
{
 "ShardIterator":
"AAAAAAAAAAGBmIC9k7uah4A0bb0oCW2QfniIesq8snvGJjvlu6D6/UyejLbcjUZK/h
zRmSnJtTlQpVpInUoOvacIavV0f4/7X4UE9637qgQi9lc5UqrzXfXKs1Yl4H1Cmp97L
D1si3LqqClCsWebTGW8+YUlWFXKfm0kle270c/gcFUqHsxlqyV1XH7XnsY7JVF+0opx
vWNygX0Gce0ld4xmCYJ4RPNX"
}

Use the get-records command (with the shard iterator value) to display the12.
records:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
get-records --shard-iterator
AAAAAAAAAAFn2BntwTpAyLoy9V1e1pQ9OiPz44MAMq+fXKPvG/S0eLoKaeuy/NDWq40
7234Oc1UgtS5rNOjwN+Zz0YSLDKgSmG/muEwi9ZAA+b91WxjZGatpMTHmizMIdYHkWv
LvltzFDbCd/ezoOeE3t2kWWFz0ospxacohJxWicFOnuTrAXymSpaUdWCL5junBCwQ78
h4t5v3E38P+zbYbh9OYgy4o

Creating an AWS Lambda function
In this section, we will create a Lambda function to process Kinesis events.

For a more detailed coverage of this topic, refer to the blog by Sunil Dalal
at: https:/ / www. polyglotdeveloper. com/ lambda/ 2017- 07- 05- Using-
Lambda- as- Kinesis- events- processor/ . Refer to Creating a .jar
Deployment Package Using Maven and Eclipse IDE (Java) for more details:
https:/ /docs. aws. amazon. com/ lambda/ latest/ dg/java- create- jar-
pkg-maven- and- eclipse. html.

Create a maven project. Create an example package and key in the following1.
Java code in a class (ProcessKinesisEvents):

package example;

https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://www.polyglotdeveloper.com/lambda/2017-07-05-Using-Lambda-as-Kinesis-events-processor/
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html
https://docs.aws.amazon.com/lambda/latest/dg/java-create-jar-pkg-maven-and-eclipse.html

Implementing a Big Data Application Chapter 9

[315]

import java.io.IOException;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import
com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEv
entRecord;
public class ProcessKinesisEvents {
 public String handleRequest(KinesisEvent event) throws
IOException {
 System.out.println("Record Size - " +
event.getRecords().size());
 for(KinesisEventRecord rec : event.getRecords()) {
 System.out.println(new
String(rec.getKinesis().getSequenceNumber()));
 System.out.println(new
String(rec.getKinesis().getData().array()));
 }
 return "success";
 }
}

The pom.xml file is listed as follows for reference:2.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>doc-examples</groupId>
<artifactId>lambda-java-example</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>lambda-java-example</name>
<description>AWS Lambda Java Example</description>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>1.3.0</version>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>

Implementing a Big Data Application Chapter 9

[316]

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 </plugin>
 </plugins>
</build>
</project>

Select Lambda from the IAM console:3.

Search for AWSLambdaKinesisExecutionRole and attach the permissions policy4.
to the AWS Lambda role:

Implementing a Big Data Application Chapter 9

[317]

Use the create-function command as shown to create the Lambda function:5.

aws lambda create-function \
> --region us-west-2 \
> --function-name ProcessKinesisEvents \
> --zip-file
fileb:///Users/aurobindosarkar/Downloads/IWebApps/workspace/lambda-
java-example/target/lambda-java-example-0.0.1-SNAPSHOT.jar \
> --role arn:aws:iam::450394462648:role/lambda-kinesis-execution-
role \
> --handler example.ProcessKinesisEvents::handleRequest \
> --runtime java8
{
 "TracingConfig": {
 "Mode": "PassThrough"
 },

Implementing a Big Data Application Chapter 9

[318]

 "CodeSha256": "jQQ9jo18W57ngH7HFDDv4S0DF9EYNFkYs2NoUQBFz1Q=",
 "FunctionName": "ProcessKinesisEvents",
 "CodeSize": 7763705,
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-
west-2:450394462648:function:ProcessKinesisEvents",
 "Version": "$LATEST",
 "Role": "arn:aws:iam::450394462648:role/lambda-kinesis-
execution-role",
 "Timeout": 3,
 "LastModified": "2018-01-28T18:52:25.963+0000",
 "Handler": "example.ProcessKinesisEvents::handleRequest",
 "Runtime": "java8",
 "Description": ""
}

The newly created function will be listed in the Lambda Functions console:

Create an input file (input.txt) with the following records to test the Lambda6.
function:

{
 "Records": [
 {
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "kinesisSchemaVersion": "1.0",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "sequenceNumber":
"49545115243490985018280067714973144582180062593244200961"
 },
 "eventSource": "aws:kinesis",
 "eventID":
"shardId-000000000000:495451152434909850182800677149731445821800625
93244200961",
 "invokeIdentityArn": "arn:aws:iam::account-
id:role/testLEBRole",
 "eventVersion": "1.0",
 "eventName": "aws:kinesis:record",
 "eventSourceARN": "arn:aws:kinesis:us-
west-2:35667example:stream/examplestream",

Implementing a Big Data Application Chapter 9

[319]

 "awsRegion": "us-west-2"
 }
]
}

Invoke the Lambda function. Specify the invocation-type as Event, function7.
name as ProcessKinesisEvents, region, input, and output files as shown:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws lambda
invoke \
> --invocation-type Event \
> --function-name ProcessKinesisEvents \
> --region us-west-2 \
> --payload file:///Users/aurobindosarkar/Downloads/input.txt \
> outputfile.txt

For a synchronous response, specify invocation-type as RequestResponse in8.
the preceding command.
Add an event source in AWS Lambda so that your Lambda function can start9.
polling the Amazon Kinesis stream:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws lambda
create-event-source-mapping \
> --region us-west-2 \
> --function-name ProcessKinesisEvents \
> --event-source arn:aws:kinesis:us-
west-2:450394462648:stream/KinesisTestStream \
> --batch-size 100 \
> --starting-position TRIM_HORIZON

Using the following AWS CLI command, add event records to your Amazon10.
Kinesis stream. You can run the same command more than once to add multiple
records to the stream:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
put-record \
> --stream-name KinesisTestStream \
> --data “Test Record 1” \
> --partition-key shardId-000000000000 \
> --region us-west-2

Implementing a Big Data Application Chapter 9

[320]

Validate that the Lambda function and process the records by going to11.
CloudWatch logs:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws logs
describe-log-streams --log-group-name
'/aws/lambda/ProcessKinesisEvents' --region us-west-2 --order-by
LastEventTime --descending

Using Amazon Kinesis Firehose
In this section, we will implement a delivery stream using Kinesis Firehose. The application
reads data from a Kinesis Stream and stores it in a S3 bucket.

Log in to the Management Console and go to the Kinesis Firehose console. Click1.
on the Create delivery stream button. Specify a name
(kinesisfirehosedeliverystream) for the Delivery stream name:

Choose the source as Kinesis stream and select the Kinesis stream we created in a2.
previous section (KinesisTestStream) from the dropdown list:

Implementing a Big Data Application Chapter 9

[321]

To keep our example simple, we will not do any Lambda-based processing of the2.
incoming data. So select the Disabled option for the Record transformation
parameter. Click on the Next button:

Implementing a Big Data Application Chapter 9

[322]

Create an Amazon S3 bucket called kinesistestdata from the S3 console.3.
Select Amazon S3 as the Destination for streaming data to be stored by Kinesis
Firehose:

Select kinesistestdata from the S3 bucket dropdown list. Click on4.
the Next button:

Click on the Create new or Choose button:5.

Implementing a Big Data Application Chapter 9

[323]

Select firehose_delivery-role. Click on the Allow button:6.

Click on the Next button.7.
Review all the details of the delivery stream and then click on the Create delivery8.
stream button:
You should see the success message as shown in the following screenshot: 9.

>

Implementing a Big Data Application Chapter 9

[324]

The newly created Kinesis Firehose delivery stream should be listed:

Insert a test record into the Kinesis stream KinesisTestStream with the put-10.
record command:

Aurobindos-MacBook-Pro-2:Downloads aurobindosarkar$ aws kinesis
put-record --stream-name KinesisTestStream --partition-key 123 --
data "Test Event Record"

Go to the S3 console and you should see your test record data in the destination11.
bucket (kinesistestdata):

Implementing a Big Data Application Chapter 9

[325]

Using AWS Glue and Amazon Athena
In this section, we will use AWS Glue to create a crawler, an ETL job, and a job that runs
KMeans clustering algorithm on the input data.

We use a publicly available dataset about the students' knowledge status on a subject. The
dataset and the field descriptions are available for download from the UCI site: https:/ /
archive.ics.uci. edu/ ml/ datasets/ User+Knowledge+Modeling

Log in to the AWS Management Console and go to the Glue console. Click on the1.
Add crawler button.
Specify the Crawler name as User Modeling Data Crawler as shown here.2.
Click on the Next button:

https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling

Implementing a Big Data Application Chapter 9

[326]

In the Add a data store screen, select S3 as the Data store, and select the3.
Specified path in my account option. Specify the path for the S3 bucket
containing the input data. Click on the Next button:

Select No on the Add another data store and click on the Next button.4.
On the IAM console, select the Glue service and click on the Next: Permissions5.
button:

Implementing a Big Data Application Chapter 9

[327]

Next, we attach the appropriate policies to the role. Filter for6.
AWSGlueServiceRole and select it:

Implementing a Big Data Application Chapter 9

[328]

Filter for AmazonS3FullAccess policy and select it:7.

Review the role for the Glue service and click on the Create role button:8.

Return to the crawler wizard and select the newly created IAM role. Click on the9.
Next button:

Implementing a Big Data Application Chapter 9

[329]

Select the Frequency parameter as Run on demand and click on the Next button.12.
Next, we configure a database for the crawler's output. As we do not have a13.
database configured, click on the Add database button.
Specify the name of the database as usermodelingdb and click on the Create14.
button:

Implementing a Big Data Application Chapter 9

[330]

Specify a prefix for the tables (as users) and click on the Next button:13.

Review all the details for the crawler and click on the Finish button14.
After the crawler is created, you should see the message shown here. Click on the15.
hyperlink Run it now? to execute the crawler:
After the crawler finishes running, click on the Tables link to see the tables listed.16.
Click on the newly created table (usersinput). You should see the following
details. Notice that the header line is skipped and 553 records from our input file
are inserted. Additionally, verify that the inferred schema is accurate:

Implementing a Big Data Application Chapter 9

[331]

Next, we create an ETL job using Glue. Click on the Jobs link and then click on19.
the Add job button.
Next, we specify the properties of the ETL job, including the Name (User20.
Modeling ETL Job), IAM role (select the AWSGlueServiceRole-GlueRole we
created earlier), select the option for using the proposed script generated by AWS
Glue, select the language as Python, specify a name for the script file, and S3
locations for the script and temporary directory (create these folders from the S3
console). Click on the Next button:

Implementing a Big Data Application Chapter 9

[332]

Choose usersinput table as the data source and click on the Next button.22.
Select Amazon S3 as the Data store, Format as Parquet, and the S3 Target path23.
(create the S3 folder from the S3 console). Click on the Next button:

On this screen, you can map the source columns to the target columns.24.
Additionally, you can drop columns in the target, if they are not relevant to your
analysis. We will leave the mapping as-is as we want all of the input data in the
target parquet file. Click on the Next button:

Implementing a Big Data Application Chapter 9

[333]

Review the Job properties and click on the Finish button.25.

You should see the code generated by Glue. In the left pane, there is a figure that26.
shows you the flow visually. We can make changes to the generated script, if
required. Click on the Run job button in the top menu:

Implementing a Big Data Application Chapter 9

[334]

Click on the Run job button. We do not have any further parameters to specify27.
for our example:

You should see the Run job button disabled as the job has started:28.

Switch to the Jobs console to see your submitted job listed. Select the job to29.
expand the display. You should see the Run status as Running. Upon completion
of the job, the status changes to Succeeded.
Go to the S3 console to confirm that the parquet files have been created in the30.
target folder:

Implementing a Big Data Application Chapter 9

[335]

Next, we use Athena to check the contents of the source table. Start the Athena33.
console and click on the Query Editor link.
Select the database and click on the three dots next to the source table to display34.
the menu. Click on the Preview table option:

Implementing a Big Data Application Chapter 9

[336]

The SQL for querying contents of the table is executed and the rows are displayed35.
as shown in the following screenshot:

Implementing a Big Data Application Chapter 9

[337]

Create a Python-Spark-Glue script file (testscript.py) containing the36.
following code:

import sys
from awsglue.utils import getResolvedOptions
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.transforms import SelectFields
from awsglue.dynamicframe import DynamicFrame
from pyspark.context import SparkContext
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans

args = getResolvedOptions(sys.argv, ['JOB_NAME'])
destination = "s3://gluesparkemrtestdata/datasets/parquet/results/"
namespace = "usermodelingdb"
tablename = "usersinput"

sc = SparkContext()
glueContext = GlueContext(sc)
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

#Load table and select fields
datasource0 =
glueContext.create_dynamic_frame.from_catalog(name_space =
namespace, table_name = tablename)
SelectFields0 = SelectFields.apply(frame = datasource0,
paths=["stg","scg","str","lpr","peg","uns"])
DataFrame0 = DynamicFrame.toDF(SelectFields0)

#Select features and convert to Spark ML required format
features = ["stg","scg","str","lpr","peg"]
assembler =
VectorAssembler(inputCols=features,outputCol='features')
assembled_df = assembler.transform(DataFrame0)

#Fit and Run Kmeans
kmeans = KMeans(k=2, seed=1)
model = kmeans.fit(assembled_df)
transformed = model.transform(assembled_df)

#Save data to destination
transformed.write.mode('overwrite').parquet(destination)
job.commit()

Implementing a Big Data Application Chapter 9

[338]

Upload the script file to the S3 script folder using the S3 console:37.

Create a new job and specify the Name as Spark KMeans Job. This time select38.
the option An existing script that you provide. Furthermore, select Python as the
language, and specify the S3 paths for the testscript.py file and the
temporary directory. Click on Next:

Implementing a Big Data Application Chapter 9

[339]

Click on the Next button on the Connections screen.39.

Implementing a Big Data Application Chapter 9

[340]

Review the Job properties and click on the Finish button:40.

Follow the steps for running the job as shown in the previous steps of this41.
exercise.
After the job has completed successfully, check the S3 results folder to confirm42.
that the output files are present:

Next, we will create another crawler to parse the results file. Follow the steps43.
listed for creating a crawler as shown earlier in this exercise. We display the final
review screen for the crawler for reference purposes:

Implementing a Big Data Application Chapter 9

[341]

After the crawler finishes processing, you should see another table added to your44.
database (usersresults).
Verify the contents of the newly created table (userresults) using Athena as 45.
shown previously. Note that a new column called prediction is added by the K-
Means algorithm.

Using Amazon SageMaker
In this section, we will demonstrate setting up an Amazon SageMaker notebook instance.
Run a sample machine learning job and create an endpoint to host the model.

Implementing a Big Data Application Chapter 9

[342]

Refer to the detailed comments and explanations in the sample Python
notebook used in this section at: https:/ /github. com/awslabs/ amazon-
sagemaker- examples/ blob/ master/ introduction_ to_ applying_ machine_
learning/ breast_ cancer_ prediction/ Breast%20Cancer%20Prediction.
ipynb.

Log in to AWS Management Console and go to the Amazon SageMaker console.1.
Click on the Create notebook instance button:

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.ipynb

Implementing a Big Data Application Chapter 9

[343]

On the Notebook instance settings, we will create an Amazon SageMaker2.
execution role. Click on the IAM role drop-down list and select the Create a new
role option:

Implementing a Big Data Application Chapter 9

[344]

Select the Any S3 bucket option and click on the Create role button:3.

Specify the Notebook instance name (as SageMakerTestNotebookInstance),4.
select the Notebook Instance type, and select the No VPC option. Click on the
Create notebook instance button:

Implementing a Big Data Application Chapter 9

[345]

After the notebook instance is created, you should see a success message. The5.
newly created notebook instance listed on the SageMaker Notebook instances
screen. The status should change from Pending to InService.

Implementing a Big Data Application Chapter 9

[346]

Click on the SageMaker notebook instance to see the details for it. Click on the6.
Open button to open the Jupyter notebook:

Navigate through the samples provided: /sample-8.
notebooks/introduction_to_applying_machine_learning/breast_cancer_predicti
on.
Click on the Breast Cancer Prediction.ipynb file. Select conda_python3 from the9.
kernel drop-down menu:

Implementing a Big Data Application Chapter 9

[347]

Create a S3 bucket (from the S3 console) and name it sagemakertestdata.10.
Change the bucket name to the newly created bucket:11.

Execute the code in the notebook cell by cell. The code creates a training job that12.
can be seen on the SageMaker Jobs console. While the training job is running, you
will see the Status as inProgress. The Status changes to Completed when the
training is completed.
After training the linear algorithm on our data, we set up a model that can be13.
hosted later. After we set up the model, we configure and create the hosting
endpoints. You can view the endpoint configuration on the SageMaker Endpoint
configuration console. Wait for the Status to change to inService.
The notebook contains code for testing the model using the endpoint. Finally,14.
execute the following cell in the notebook to delete the endpoint:

Confirm that the endpoint is deleted (from the SageMaker Endpoint console).16.
From the Actions menu on the SageMaker Notebook instances console, choose17.
the Delete option:

Implementing a Big Data Application Chapter 9

[348]

Click on the Delete button to confirm:18.

Summary
In this chapter, we presented a series of hands-on exercises for implementing the key
components of a big data application. We included Amazon Kinesis, AWS Lambda
functions, Amazon Glue and Athena, and Amazon SageMaker for machine learning
applications.

In the next chapter, we will explore the deployment big data applications on AWS using
Amazon CloudFormation templates and AWS SAM (Serverless Application Model) for
serverless applications.

10
Deploying a Big Data System

In Chapter 7, Deploying to Production and Going Live, we explored the deployment of
applications in AWS environments, and in Chapter 9, Implementing a Big Data
Application, we presented a hands-on session in Amazon SageMaker that also deployed the
machine learning model. In this chapter, we will shift our focus to the deployment of big
data applications using AWS services. More specifically, we will implement typical
deployment use cases for big data and serverless computing applications using AWS
services such as CloudFormation, Lambda, Serverless Application Model (SAM), Cloud9,
and CodeDeploy.

In this chapter, we will cover the following topics:

Using CloudFormation templates
Authoring and deploying serverless applications
Understanding AWS SAM
Using AWS Serverless Application Repository

Deploying a Big Data System Chapter 10

[350]

Using CloudFormation templates
CloudFormation is used to define, provision, and manage a collection of related AWS
resources. This collection is referred to as a CloudFormation stack. The stack’s template can
be defined in YAML or JSON. Hence, the input to CloudFormation is a YAML file and the
output is the provisioned AWS resources.

There are many sample CloudFormation templates available from AWS. You will probably
never have to create a CloudFormation template from scratch. You can always download a
sample and modify it to meet your requirements. These samples include templates for big
data applications, including streaming applications, machine learning and deep learning
applications, serverless applications, and many more.

Access the GitHub repository for AWS labs for sample CloudFormation
templates at: https:/ / github. com/awslabs.

In this section, we will use a sample CloudFormation template to create a data lake solution.

For more detailed instructions on the data lake CloudFormation example
presented here, refer to: https:/ /github. com/ awslabs/ aws- data- lake-
solution.

Creating a data lake using a CloudFormation
template
The following are the steps to create a data lake using a CloudFormation template:

Follow the instructions on the GitHub page for this example. Copy the link to the1.
S3 location for the template file. Change the region (on the Management Console
to point to your region, if required). Click on the Next button:

https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution
https://github.com/awslabs/aws-data-lake-solution

Deploying a Big Data System Chapter 10

[351]

Specify a Stack name as DataLakeTestStack, which is shown as follows:2.

Deploying a Big Data System Chapter 10

[352]

Specify the Administrator Configuration details, including name, email address,3.
and access IP for the ElasticSearch cluster (for test purposes this can be
0.0.0.0\0 for now). You can choose the Send Anonymous Usage Data
parameter as Yes. Send anonymous usage data to AWS. This data is used by
AWS to better understand how customers use this solution and related services
and products:

Specify tags for the various resources in your stack. For now, we leave them4.
blank:

Deploying a Big Data System Chapter 10

[353]

Leave the IAM Role as CloudFormationRole as shown:5.

Review all the details, and check the acknowledgment and click on the Create6.
button:

At this stage, you should see the CREATE_IN_PROGRESS for your stack (and7.
the nested stacks within) on the CloudFormation console:

Deploying a Big Data System Chapter 10

[354]

Select a stack (DataLakeTestStack) from the list to see more detailed information.8.
Click on the Overview tab:

Click on the Events tab to see the statuses as the creation events execute:9.

The Resources tab displays the AWS resources and their current status:10.

Deploying a Big Data System Chapter 10

[355]

If you want to view the CloudFormation template and then click on the Template11.
tab:

 After 20-25 minutes, you should see the CREATE_COMPLETE message against12.
your stack (and the nested stacks):

Go to the DynamoDB console to verify that the tables were created successfully:13.

Deploying a Big Data System Chapter 10

[356]

You can view the details of a specific DynamoDB table by selecting it from the14.
list:

Similarly, you can go to the Amazon Elasticsearch Service dashboard to verify15.
the creation of the Elasticsearch domain:

Click on the domain name to verify the details of the Elasticsearch cluster:16.

Deploying a Big Data System Chapter 10

[357]

Click on the Cluster health tab to ensure that the Status is Green:17.

Deploying a Big Data System Chapter 10

[358]

At this stage, you have a fully functional data lake provisioned using a18.
CloudFormation template. You should have received an email with the user ID
and temporary password in the Administrator's mailbox. Use the credentials to
sign in to your data lake and explore it. As it is expensive to keep this stack
running, select the Delete Stack option from the Actions menu:

Here, we get a warning because we tried to delete a nested stack. As we don't19.
want to be in an unstable state with respect to the root stack, we cancel out of this
screen:

Deploying a Big Data System Chapter 10

[359]

Select the root stack (DataLakeTestStack) and choose Delete Stack option from20.
the Actions menu. Click on the Yes, Delete button:

You should see the Status for the stacks change to DELETE_IN_PROGRESS as21.
shown:

After the stack is deleted, select the Deleted filter to see the details of stacks you22.
deleted:

Deploying a Big Data System Chapter 10

[360]

You will see the root stack and the nested stack listed with the Status as23.
DELETE_COMPLETE:

You can quickly verify that the DynamoDB tables, Elasticsearch Domains, and24.
other resources have been deleted by going to their respective consoles. The
following screen shows that the DynamoDB tables no longer exist:

Authoring and deploying serverless
applications
There are several choices for authoring and deploying serverless applications. We can use
different tools for different use cases. For example, you can use the Lambda console for
quick creation and iteration of simple apps. It is easy to use and has a built-in dev
environment. If you have a more complex application, then you can define those with SAM
and take advantage of tools built on top of SAM such as SAM Local for testing and
debugging. You can plug SAM local into the IDE of your choice or use Cloud9 that is
optimized for serverless applications and has SAM Local built-in. For incrementally rolling
out new versions into production, you can build on SAM for CI/CD capabilities, including
canary deployments.

Deploying a Big Data System Chapter 10

[361]

The Lambda console now has the Cloud9 editor, which is optimized for serverless
applications for quick author-test-debug iterations in serverless application development. It
gives you an IDE-like experience. Realistically, this application lifecycle includes code
check-in (after authoring and testing the code is completed) that kicks off the automated
deployment process. This process picks up the code from the code repository, packages it,
and builds the application. It then tests and deploys it in the production environment.

Using AWS Lambda console to author and test Lambda functions:

Log in to the Management Console and go to the Lambda console. Click on1.
Create a function button:

We have shown the process of creating a Lambda function from scratch in2.
Chapter 9, Implementing a Big Data Application. Here, we will select a pre-
configured template for a Lambda function from the available blueprints:

Deploying a Big Data System Chapter 10

[362]

Search for the blueprint by entering hello-world in the filter field:3.

For simplicity, we choose hello-world-python3 as the blueprint here. Check on4.
the radio button and click on the Configure button:

Provide a name for the Lambda function (TestLambdaBlueprint). For Role5.
select the Choose an existing role option and then select LambdaFullAccess as
the Existing role (you should be more selective in your production environment
to restrict access to only the resources required by this function):

Deploying a Big Data System Chapter 10

[363]

Scroll down to see the Lambda function code:6.

Deploying a Big Data System Chapter 10

[364]

Click on the Create function button:7.

You should see the message as shown to confirm the successful creation of the8.
Lambda function:

The view you land on contains function graph or the designer view. It is a9.
visualization of what flows into your Lambda function and what flows out of it.
You can see the event sources that are configured to trigger the function and also
the downstream resources the function has permissions to access. The function is
displayed in the middle:

On the left of the function box, you can see the list of triggers that are added to10.
the function. We can click on a trigger from the list located in the left pane and
that particular resource is added as a trigger. Click on API Gateway in the list of
triggers:

Deploying a Big Data System Chapter 10

[365]

If you scroll down further at this stage, you will see that the panel below also11.
changes accordingly to allow you to configure the newly added trigger as
shown:

On the right of the function box are the resources the function can access. The12.
CloudWatch logs are added by default to all functions, so that your function can
emit logs to CloudWatch. By clicking on the right, you can see the details by
resources and actions the function can perform, on which resources. Click on S3
to see the resource and permitted actions on them:

Deploying a Big Data System Chapter 10

[366]

Click on the By action link to see the details by permitted actions against the13.
resources:

Scroll further down to see the source code of the function. You can see all the files14.
in the deployment package in the left pane:

>

Deploying a Big Data System Chapter 10

[367]

Press Cmd+Shift+F on Mac (or Ctrl+Shift+F on Windows) to go into a full-screen15.
mode for an IDE-like experience:

Next, we will define a test event for testing our function. You can create multiple16.
test events and persist them. Click on Test and select Configure Events from the
drop-down menu:

Deploying a Big Data System Chapter 10

[368]

Create the Test Event as shown:17.

Click on Test to execute the Lambda function. You will see the response right18.
below the code window. Some important metrics are also displayed as shown:

Scroll back up to the Designer section and click on the Monitoring tab:19.

Deploying a Big Data System Chapter 10

[369]

In Monitoring view, there are interactive graphs that allow you to zoom into and20.
out off any time frame and jump to the logs or the metrics for that time frame:

In the Duration pane, select the period during which you executed the Test21.
events. The view changes as shown:

Deploying a Big Data System Chapter 10

[370]

Click on the Jump to Logs link to view the CloudWatch logs for that time period:22.

Next, from the Actions menu, select the Export function option:23.

Click on the Download AWS SAM file button and then on the Download24.
deployment package button. The deployment package essentially contains your
function's source code in this example. We will discuss the contents of the SAM
file in a later section:

Deploying a Big Data System Chapter 10

[371]

From the Actions menu, select the Delete function option:25.

Click on Delete to confirm the deletion:26.

You should see the following message after the function has been deleted27.
successfully:

Deploying a Big Data System Chapter 10

[372]

Understanding AWS SAM
Typically, the application development process is more complex than that with the
environment containing code repositories. Most applications comprise dozens of resources
and several Lambda functions. For such applications, using Lambda console is not a good
option. Also, though CloudFormation is a powerful resource, the issue is that it was built
years ago, and it is optimized for infrastructure and less so for serverless.

SAM (Serverless Application Model) is an open specification (Apache 2.0) realized as
a CloudFormation extension optimized for serverless. It is essentially a
CloudFormation template under the covers. Hence, SAM can support anything that
CloudFormation supports. You can define any CloudFormation resource within your SAM
template and it will work just fine.

Understanding the SAM template
The following is a YAML source for the SAM template we downloaded (from the export
function option) for the Lambda function defined in the previous section:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: A starter AWS Lambda function.
Resources:
 TestLambdaBluePrint:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: lambda_function.lambda_handler
 Runtime: python3.6
 CodeUri: .
 Description: A starter AWS Lambda function.
 MemorySize: 128
 Timeout: 3
 Role: 'arn:aws:iam::450394462648:role/LamdaFullAccess'
 Tags:
 'lambda-console:blueprint': hello-world-python3

You have a Lambda function defined here. Below that you are defining a couple of Lambda
function properties, including a link to the code, the handler, the runtime, and some IAM
policies that the function is going to assume. Below that we would define the event source
(we did not select a specific event source in our example). If we were using the API
Gateway, then we need not explicitly define the API here – the event source definition is
sufficient for CloudFormation to provision that API in your account.

Deploying a Big Data System Chapter 10

[373]

The Transform line tells CloudFormation to take this template and transform it into a full-
blown CloudFormation template under the covers. CloudFormation will use this template
to provision the resources in the AWS account. Typically, the resources that get provisioned
here include the Lambda function, a couple of IAM resources, some API Gateway
resources, and so on. The full-blown CloudFormation template that is generated is
complicated and voluminous compared to the SAM.

Introducing SAM Local
Testing and Debugging present a unique set of challenges in serverless applications. Firstly,
serverless means that you don’t have to manage any servers. The underlying infrastructure
is abstracted away from you and is managed by AWS. So how do you make sure that the
code that runs successfully in the dev environment will actually run successfully in Lambda
as well. Ideally, we need to test in an environment that resembles Lambda in terms of the
OS, libraries, and runtime. Additionally, it would be great if the limits (memory, timeout)
could be enforced locally. Also, mimic responses and logs locally. Lastly, it would be great
to generate test events that are syntactically accurate and different for each trigger. This is
challenging because Lambda has over fifteen different event sources, currently and each
source emits its own specific event pattern to Lambda. For example, for an S3 event source,
we would have to retrieve the event, save it, and then customize it for our testing needs.
This process can be time consuming, especially if you have to do this for multiple event
sources. The tool that helps you do all this is SAM Local.

SAM Local is an open source CLI tool for local testing of serverless apps that ensures that
your application runs as expected in the production Lambda environment. It leverages
Docker images to mimic Lambda’s execution environment and enforces configuration limits
(same memory and timeout limits).

If you are using the API Gateway, then you can access your API on the local machine. SAM
Local emulates the Lambda functions and APIs. Additionally, the event generator helps you
generate event payloads for common Lambda triggers. The responses and logs are also as it
would be in the Lambda environment. You can pipe the output to stdout and stderr and
you can also persist the logs for further inspection. Additionally, SAM Local exposes a
debugger port so you can debug your applications using any IDE.

Some of the other useful SAM Local commands help you validate the SAM template against
the specification on your local machine. This provides quick feedback locally instead of
discovering issues during deployment. The start API command, starts up a local http server
and makes all your APIs available to you on your local machine. The invoke command
allows you to locally execute your function.

Deploying a Big Data System Chapter 10

[374]

All of this SAM Local functionality is available out of the box in AWS Cloud9. It provides
an easy-to-use UI to strip away the complexity of SAM Local commands.

Developing serverless applications using AWS Cloud9
AWS Cloud9 is a cloud-based dev environment used to write, test, and debug your
serverless applications with just a browser. It is optimized for serverless and is fully
integrated with the Lambda environment. You can import functions from the Lambda
environment into your Cloud9 deploy functions back into the Lambda environment.

It comes with native support for SAM, so you can generate the templates easily. It comes
prepackaged with all the tools you would expect from IDEs for the language of your choice.
A customizable IDE can set themes and shortcuts as you expect from a local dev
environment.

For a detailed coverage of AWS Cloud9, its features and tutorials, refer to:
https:/ /aws. amazon. com/ cloud9/ .

You can invoke the function locally (or remotely in the actual Lambda environment) using
SAM Local under the covers. It comes with integrated debugger with features you would
expect from an IDE debugger. You can deploy the function back to the Lambda
environment, and invoke it remotely. In this case, the response is received from the actual
Lambda environment.

Automating serverless application deployments
If the application is built on top of SAM, then all of the tooling is already in place for
automated deployments. You can orchestrate this with CodePipeline, which can essentially
pull your code (from the code repository), pull down the required packages, create the
deployment package, and build the application. You can test the application using third-
party tools that are natively supported by CodePipeline.

For more details on serverless application developer tooling, refer to:
http:/ / aws. amazon. com/ serverless/ developer- tools.

https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools
http://aws.amazon.com/serverless/developer-tools

Deploying a Big Data System Chapter 10

[375]

You can use the power of SAM to deploy in multiple environments. The problem here is
that there is an immediate switch from the old to the new version of the code. And that is
not how we usually deploy in production (see blue-green deployment in Chapter 7,
Deploying to Production and Going Live). Usually, we incrementally roll out new versions to
help reduce deployment risks.

However, you can do safe deployments with SAM. Lambda aliases now enable traffic
shifting that is you can point an alias to two different versions and shift traffic between
them using preassigned weights. Alias is essentially a pointer to a version. With weighted
aliases, you can actually publish a new version and add it to the alias with percentages
defined for each version. You can divert 5% of the traffic to the new version while 95%
continues using the earlier version.

You also automate the deployment process using CodeDeploy. It comes with preconfigured
canary and linear deployments (that is, you can linearly increase traffic as time progresses).
It provides guardrails for safe deployments, for example, autoalarm-based rollbacks; pre-
and post-traffic validation hooks (that is, test hooks as Lambda functions and can run before
or after your traffic has shifted to the new version). You can easily monitor the deployment
using the CodeDeploy console.

As SAM is natively supported, you just need to add a few lines to the SAM template for safe
deployments. You can define function configurations for all the functions in the SAM
template: tags, runtime, and other essential things that are common across all your
functions. This is useful to define the deployment strategy for all the functions in the
application at one place rather than for each function, separately. Next, you have to include
a line for creating the alias (that autopublishes a version with each deployment). Lastly, you
can define your deployment preferences with respect to the kind of deployment you would
like to execute. For example, shift 10% of the traffic to the new version, if all goes well, then
after 10 minutes shift all the traffic to the new version.

For test hooks and alarms, you can define pre- and post-traffic hooks (lambda functions that
run as tests), they succeed or fail and accordingly they communicate back to CodeDeploy
(so it knows how to react). The alarms can also be defined easily using the alarms construct
within SAM. If any of the alarms are triggered during deployment, then that is going to
prompt a rollback to the earlier version. It's easy to monitor through the CodeDeploy
console.

Deploying a Big Data System Chapter 10

[376]

Using AWS Serverless Application
Repository
Developers and customers are facing challenges in finding, cloning, building, and
deploying serverless apps. Typically, we need to get help from developers in the
community, look at code samples, copy-and-paste the code, ensure they build, ensure they
function properly, and ensure the roles and permissions are set up appropriately. Having to
do all that is complicated for developers new to the the serverless paradigm.

There are several options to get started with serverless applications. Earlier, these options
included AWS blueprints. However, the blueprints are a limited set that AWS creates and
curates. It is not open to third parties and typically the functions have a limited scope in
terms of the resources while serverless applications are a lot more than that (scalable,
available, fault-tolerant, and secure). They are not linked to GitHub (so you can’t go look at
the source code and make changes). Hence, these blueprints are characterized by the limited
selection, scope, and language choices.

At the same time, many serverless examples are shared on GitHub. GitHub provides a
massive selection, but the developer has to find the right serverless apps, ensure source
code quality, and they also have to recreate the build environment. GitHub is not connected
to the authoring workflow for Lambda functions. There are essentially no hooks from
GitHub to AWS that helps set up the right permissions and roles.

GitHub provides great community experience and blueprints provide a good authoring
experience, but we need a solution that provides the pluses of both. The solution is the
recently announced AWS Serverless Application Repository. Though the offerings are
limited currently, it will definitely pick up in the weeks and months ahead.

The AWS Serverless Application Repository is a collection of serverless applications
published by developers, companies, and partners in the serverless community. It helps
you easily discover, deploy, and publish serverless applications. For example, you can
deploy published code samples, mobile backends, web backends, or complete applications
to get started with AWS serverless compute in minutes. The repository enables sharing
between developers, helps companies to connect with customers, and enable customers to
move faster with the serverless ecosystem. You can share the applications privately within
your AWS account (or organizations and departments) or publicly.

Deploying a Big Data System Chapter 10

[377]

 Each application is packaged with an AWS SAM template that defines the AWS resources
used. Publicly shared applications also include a link to the application’s source code.
Currently, there is no additional charge to use the Serverless Application Repository—you
only pay for the AWS resources used in the applications you deploy. You can also use the
Serverless Application Repository to publish your own applications and share them within
your team, other teams across your organization, or with the community at large.

The AWS Serverless Application Repository is currently available in preview. To deploy
and publish applications in the Serverless Application Repository, you will need to sign up
for the preview.

Summary
In this chapter, we used AWS services such as CloudFormation, Lambda, SAM, Cloud9,
and CodeDeploy for deploying big data and serverless applications. We showed the use of
the CloudFormation template and the process of authoring and deploying serverless
applications.

In this book, we started our coverage of AWS cloud by describing basic cloud concepts.
Then, we presented a detailed example, and focused our attention on design and
implementation of typical non-functional requirements, including scalability, high-
availability, and security. Finally, in the last three chapters, we shifted our focus to the
design, implementation, and deployment of the next generation of applications being
deployed on the cloud, including streaming applications, machine learning, and serverless
applications.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering AWS Lambda
Yohan Wadia, Udita Gupta

ISBN: 978-1-78646-769-0

Understand the hype, significance, and business benefits of Serverless computing
and applications
Plunge into the Serverless world of AWS Lambda and master its core
components and how it works
Find out how to effectively and efficiently design, develop, and test Lambda
functions using Node.js, along with some keen coding insights and best practices
Explore best practices to effectively monitor and troubleshoot Serverless
applications using AWS CloudWatch and other third-party services in the form
of Datadog and Loggly
Quickly design and develop Serverless applications by leveraging AWS Lambda,
DynamoDB, and API Gateway using the Serverless Application Framework
(SAF) and other AWS services such as Step Functions
Explore a rich variety of real-world Serverless use cases with Lambda and see
how you can apply it to your environments

https://www.packtpub.com/virtualization-and-cloud/mastering-aws-lambda

Other Books You May Enjoy

[379]

AWS Automation Cookbook
Nikit Swaraj

ISBN: 978-1-78839-492-5

Build a sample Maven and NodeJS Application using CodeBuild
Deploy the application in EC2/Auto Scaling and see how CodePipeline helps you
integrate AWS services
Build a highly scalable and fault tolerant CI/CD pipeline
Achieve the CI/CD of a microservice architecture application in AWS ECS using
CodePipeline, CodeBuild, ECR, and CloudFormation
Automate the provisioning of your infrastructure using CloudFormation and
Ansible
Automate daily tasks and audit compliance using AWS Lambda
Deploy microservices applications on Kubernetes using Jenkins Pipeline 2.0

https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook

Other Books You May Enjoy

[380]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access controls
 controlling 210
 signed cookies 210
 signed URLs 210
access token 289
Amazon analytics-related services
 about 76
 Amazon Elastic MapReduce (EMR) 77
 Amazon Kinesis 77
Amazon Athena
 using 325, 326, 328, 329, 333, 341
Amazon CloudFront 74
Amazon CloudWatch
 about 74, 134
 using 134
Amazon compute-related services
 about 68
 Amazon EC2 68
 Amazon EC2 container service 69
Amazon database-related services
 about 70
 Amazon DynamoDB 71
 Amazon ElastiCache 72
 Amazon Redshift 71
 RDS 71
Amazon DynamoDB 71
Amazon EBS 70
Amazon EC2 68
Amazon EC2 container service 69
Amazon Elastic Load Balancing 73
Amazon Elastic MapReduce (EMR)
 about 77, 281
 auto scaling, using 279
 costs, lowering 279
 EC2 Spot, using 279

 use cases 277, 278
 using, best practices 276
Amazon ElastiCache 72
Amazon Glacier 70
Amazon Kinesis Analytics
 used, for analyzing data streaming 144
Amazon Kinesis Firehose
 using 320, 321, 322, 324
Amazon Kinesis Stream
 setting up 310, 312, 314
Amazon Kinesis
 about 77
 Data Analytics 274
 Data Firehose 275
 Data Streams 274
 used, for streaming data analysis 274
Amazon Machine Learning 77
Amazon management tools
 about 74
 AWS CloudFormation 74
 AWS CloudTrail 75
 CloudWatch 74
Amazon messaging-related services
 about 72
 Amazon Pinpoint 73
 Amazon SES 72
 Amazon SNS 72
 Amazon SQS 72
Amazon networking and content delivery services
 Amazon Virtual Private Cloud (Amazon VPC) 73
 Elastic Load Balancing 73
Amazon Pinpoint 73
Amazon Redshift 71
Amazon Relational Database Service (RDS) 71,

94

Amazon Route 53 74
Amazon S3 70, 281

[382]

Amazon S3 storage classes
 Amazon Glacier 88
 Amazon S3 Standard 88
 Amazon S3 Standard - Infrequent Access 88
Amazon SageMaker
 features 283
 key algorithm 283
 using 341, 344, 346, 347, 348
 using, for distributed machine learning 282
Amazon security, identity, and compliance services
 about 75
 AWS Certificate Manager 76
 AWS Directory Service 76
 AWS WAF 76
 IAM 75
 KMS 76
Amazon Simple Email Service (SES) 72
Amazon Simple Notification Service (SNS) 72
Amazon Simple Queue Service (Amazon SQS) 72
Amazon storage-related services
 about 69
 Amazon EBS 70
 Amazon Glacier 70
 Amazon S3 70
Amazon Web Services (AWS)
 about 15
 account, creating 16, 17, 19, 21
 account, setting up 15
 management console, exploring 21, 23, 24, 25
 reference link 78
 using, for disaster recovery 186
Apache Spark 48, 78
application development environment
 about 91
 production environments 92
 purpose 91
 QA/test environment 92
 staging environment 92
application security
 about 223
 data, securing at rest 230
 ELB, configuring for SSL 225, 228, 230
 self-signed certificates, generating 224
 transport security, implementing 224
architecture

 evolving, against loads 137
 half a million to a million users, scaling 139, 140
 million to ten million users, scaling 141
 one to half a million users, scaling from 137,

138, 139
Auto Scaling
 AMI, creating 146
 construction 146
 ELB, creating 149, 153, 156, 157, 158
 group, creating 164, 165, 166, 168, 170, 172,

174

 groups, scaling 176
 groups, testing 175
 launch configuration, configuration 158, 160,

162, 163
 setting up 146
availability objectives
 defining 178
availability zone (AZ) 190
Availability Zone Redundancy 182
Availability Zones 182
AWS API activity
 tracking, with CloudTrail 212
AWS Certificate Manager (ACM) 76, 209
AWS Cloud construction
 about 95
 EC2 Instance Key Pairs, creating 97
 EC2 Instance, creating 101, 109
 Elastic IPs (EIP), creating 109
 RDS, configuring 112, 116, 121, 123, 126
 roles, creating 98, 101
 Security Groups, creating 95
 software stack, installing 126, 129
 software stack, verifying 126, 129
AWS Cloud9
 about 374
 reference link 374
 used, for developing serverless applications 374
AWS cloud
 Amazon S3 storage, using 88
 auto scale, using 84, 86
 AWS services, using 90
 cost lowering, strategies 81
 costs, analyzing 81
 costs, managing 79

[383]

 costs, monitoring 81
 costs, optimizing 79, 80, 89
 costs-related objectives, setting 79
 database utilization, optimizing 89
 EC2 Instance, selecting 82, 84
 queues, using 91
 reserved instances, using 86
 spot instances, using 87, 88
 unused instances, turning off 84
AWS CloudFormation 74
AWS CloudFront
 using, for content distribution 134
AWS CloudTrail 75, 212
AWS CloudWatch
 reference link 104
AWS components
 about 68
 AI-related service 77
 Amazon analytics-related services 76
 Amazon compute-related services 68
 Amazon database-related services 70
 Amazon machine learning service 77
 Amazon management tools 74
 Amazon messaging-related services 72
 Amazon security, identity, and compliance

services 75
 amazon services 78
 Amazon storage-related services 69
 AWS networking and content delivery services

73

 used, in big data applications 274
AWS Direct Connect 74
AWS Directory Service 76
AWS ELB
 used, for scaling without service interruptions

134

AWS environments
 creating, with CloudFormation 238
 managing, with CloudFormation 238
AWS Glue
 about 277, 281
 crawlers 277
 Data Catalog 277
 ETL service 277
 using 325, 326, 328, 329, 333, 341

AWS high availability architecture
 about 189
 AZ 190
 EC2 instances 191
 ELB 191
 RDS 191
 S3 191
 VPC 192
AWS Identity and Access Management (IAM)
 about 75, 214
 roles 215
 used, for securing infrastructure 214
AWS infrastructure services
 Amazon CloudWatch, using 134
 AWS CloudFront, using for content distribution

134

 data services, scaling 135
 EC2 container service, using 136
 ELB, used for scaling without service

interruptions 134
 leveraging, for scalability 133
 scaling 136
AWS infrastructure
 AWS Cloud construction 95
 Cloud deployment architecture 93
 setting up 92
AWS Key Management Service (KMS)
 about 76
 issues, managing 217
 keys, creating 218, 219, 220, 222
 keys, using 222
 using 217
AWS Lambda function
 creating 314, 316, 317, 319
AWS Lambda
 about 69, 142
 using 142
AWS management tools
 reference link 75
AWS networking and content delivery services
 about 73
 Amazon CloudFront 74
 Amazon Route 53 74
 Amazon VPC 73
 AWS Direct Connect 74

[384]

AWS production deployment architecture
 about 250
 bastion host 258
 bastion subnet 258
 private subnets 252, 254, 256
 security groups 259, 261
 VPC subnets 252
AWS SAM
 about 372
 SAM Local 373
 SAM template 372
AWS Security Token Service
 reference link 207
AWS security
 AWS API activity, tracking with CloudTrail 212
 considerations, while using CloudFront 208
 Identity Lifecycle Management, implementing

211

 implementing, best practices 206
 security analysis, logging 212
 security configuration, auditing 213
 security configuration, reviewing 213
 third-party security solutions, using 212
AWS serverless application repository
 using 376, 377
AWS serverless options
 examples 275
AWS services and products
 reference link 93
AWS services
 URL 15
 used, for implementing large-scale API-based

architecture 142
 using, for out-of-the-box scalability 132
AWS solutions
 used, for archiving 247, 248
 using, for backup 247, 248
AWS WAF 76

B
bastion host 258
big data applications
 about 272
 AWS components, used 274
 EMR cluster, securing 284

 security overview 284
 serverless applications, securing 286
Business Process Execution Language (BPEL) 38

C
Certification Authorities (CAs) 224
Classless Inter-Domain Routing (CIDR) 255
cloud applications design principles
 about 39
 eventual consistency, designing for 47
 failure, designing for 43, 44
 parallel processing, designing for 44
 performance, designing for 45
 scale, designing 39, 40, 42
cloud computing
 about 7
 costs, estimating 53, 55
cloud infrastructure
 automating 42
cloud-based machine learning models
 deploying 53
cloud-based machine learning pipelines
 deploying 51, 53
cloud-based multitier architecture 28, 29
cloud-based service models
 IaaS 9
 PaaS 9
 SaaS 9
cloud-based workloads
 about 13
 on-premise applications, migrating to cloud 13
cloud-native applications
 about 15
 building 15
CloudFormation templates
 used, for creating data lake 350, 353, 355, 358,

360

 using 350
CloudFormation
 extending 246
 setting up 261, 264, 266
 stacks, updating 242, 244, 245
 templates, creating 240
 used, for building DevOps pipeline 241
 used, for creating AWS environments 238

[385]

 used, for managing AWS environments 238
CloudFront
 about 209
 access control options 210
 application, securing 211
 features 208
 options, for TLS 209
 using, for AWS security considerations 208
 Web Application Firewall 210
CloudTrail
 AWS API activity, tracking 212
CloudWatch
 setting up 269, 270
 using, for monitoring 246
Content Delivery Network (CDN) 45
content
 distribution, with AWS Cloud 134
Cross-Origin Resource Sharing (CORS) 88

D
data extensibility
 requisites, addressing 34, 38
data lake
 creating, with CloudFormation template 350,

353, 355, 358, 360
 reference link 350
data security
 requisites, addressing 32, 34
data
 S3 console, using for server-side encryption 230
 securing, on RDS 235
 securing, on S3 230
dataset
 reference link 325
deployments, at scale
 managing 237
dequeue operation 40
development environment
 application structure 64
 application, executing 61, 63
 setting up 58
 war file, building for deployment 63
DevOps pipeline
 building, with CloudFormation 241
disaster recovery (DR)

 about 177
 AWS, using for 186
 backup strategy, using 187
 Multi-Site architecture, using 188
 Pilot Light architecture, using 187
 restore strategy, using 187
 strategy, testing 188
 warm standby architecture, using 187
distributed machine learning
 Amazon SageMaker, using 282
 best practices 280
 data wrangling 282
 deployment 282
 experimentation 282

E
e-commerce web application
 about 56
 development environment, setting up 58
 functional requisites 56
 non-functional requisites 57
EC2 instance
 about 94, 191
 reference link 94
Eclipse with Maven plugin (m2e)
 about 58
 URL, for installing 58
Eclipse
 about 58
 reference link 58
Elastic Load Balancer (ELB)
 about 149, 191, 224
 control service 149
 HA support 194
 load balancer 149
 using, for high availability 180
Elasticsearch 143
emerging cloud-based application architectures
 about 47
 cloud-based machine learning models, deploying

53

 cloud-based machine learning pipelines,
deploying 51, 53

 Kappa architecture 51
 polyglot persistence 49, 50

[386]

EMFRS
 reference link 285
EMR cluster
 authentication 285
 authorization 285
 encryption 284
 securing 284
EMR step (EMR API) 285
EMR-Spark clusters
 configuring 290, 292, 298, 300, 305, 307
 using 290, 292, 298, 300, 305, 307
enhanced networking, Linux
 reference link 83
enqueue operations 40
event handling
 at scale 141
 large-scale API-based architecture, with AWS

services 142
 real-time applications, building with Amazon

Kinesis Analytics 145
 streaming data, analyzing with Amazon Kinesis

Analytics 144

F
failures
 AWS, using fro disaster recovery 186
 DR strategy, testing 188
 high availability, setting for application 183
 high availability, setting for data layers 183
 nature 179
 Route 53, using for high availability 180
 VPC, setting for high availability 179

G
Git command line tools
 about 58
 URL, for downloading 58
Glue Crawlers 281

H
high availability
 auto scaling 181
 implementing, in application 185
 instance 180

 setting up 189
 setting, for application 183
 setting, for data layers 183
 VPC, setting up 179
hybrid cloud 9

I
Identity and Access Management (IAM) 206
Identity Lifecycle Management
 implementing 211
identity token 289
Information Security Management System (ISMS)

204

Infrastructure as a service (IaaS)
 about 6, 9
 features 9
Infrastructure as Code (IAC) 206
infrastructure, at scale
 managing 237
Internet gateway 94
Internet of Things (IoT) 185

J
JDK 1.8
 about 58
 URL, for downloading 58
JSON file
 Resources section 262

K
Kappa architecture 51
Kerberos
 reference link 285
Kinesis Firehose 145
Kinesis Streams
 about 143
 using 143

L
Lambda architecture 50
large-scale API-based architecture
 Amazon API Gateway, using 142
 AWS Lambda, using 142
 Elasticsearch, using 143

[387]

 implementing, with AWS services 142
 Kinesis Streams, using 143
launch configuration 158

M
Maven 3
 about 58
 URL, for downloading 58
metadata 216
Model-View-Controller (MVC) architecture
 about 64
 controller 65
 model 64
 view 65
multi-tenancy
 about 10
 benefit 30
 data extensibility, requisites addressing 34, 38
 data security, requisites addressing 32, 34
 designing 30, 32

N
natural language understanding (NLU) 78

O
OCSP stapling 208
on-premise applications
 migrating, to cloud 13
Origin Access Identity (OAI) 211

P
parallel processing
 designing 44
Platform as a service (PaaS)
 about 6, 9
 features 9
polyglot persistence 49
predictive analytics
 best practices 280
principle of least privileges
 reference link 215
private cloud 8
production environments 92
production

 AWS production deployment architecture 250
 centralized logging 268
 CloudWatch, setting up 269, 270
 go-live activities, planning 249
 infrastructure, using as code 261
 setting up 250
public cloud 8

Q
QA/test environment 92

R
real-time applications
 building 145
refresh token 289
region 93
regional redundancy 182
Relational Database Service (RDS)
 about 191
 HA support 197, 200, 202
Route 53
 region availability 182
 regional redundancy 182
router 94

S
SAM Local 373
scalability
 AWS infrastructure services, leveraging 133
 objectives, defining 130
scalable application architectures
 asynchronous process, implementing 133
 AWS services, using for out-of-the-box scalability

132

 designing 131
 loosely-coupled components, implementing 132
 scale-out approach, using 132
security analysis
 logging 212
security configuration
 auditing 213
 reviewing 213
security group 94
security

 application security 223
 AWS IAM, used for securing infrastructure 214
 AWS Key Management Service, using 217
 objectives, defining 204
 responsibilities 205
 setting up 214
serverless application developer tooling
 reference link 375
serverless applications
 authentication 287
 authoring 360, 362, 364, 367, 369
 authorization 287
 AWS SAM 372
 deploying 360, 362, 364, 367, 369
 deployment, automating 374, 375
 developing, with AWS Cloud9 374
 reference link 290
serverless big data applications
 best practices 275
Service-Oriented Architecture (SOA) 133
sharding 39
Shared Application architecture 12
Shared Everything architecture 12
Shared Nothing architecture 11
Simple Storage Service (S3) 191
Software as a service (SaaS)
 about 6, 9
 feature 9
Spark Web UIs
 reference link 307
Spring Tool Suite (STS)
 about 58
 URL, for downloading 58
SSL termination
 full bridge termination 210
 half bridge termination 209

 implementing 209
stacks
 updating 242, 243, 245
staging environment 92
streaming application
 about 15
 actionable insights 273
 components 272
 continuous metric generation 273
 data consumer 273
 data producer 272
 ingest-transform-load 273
 patterns 273
 service 272
streaming data
 Amazon Kinesis Analytics, using 145
 Amazon Kinesis Firehose, using 145
 analyzing, with Amazon Kinesis 274
 analyzing, with Amazon Kinesis Analytics 144
subnets 94
support, at scale
 managing 237

T
third-party security solutions
 using 212

V
Virtual Private Cloud (VPC)
 about 94, 192
 setting, for high availability 179

W
Web Application Firewall (WAF)
 about 205, 210
 reference link 210

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Cloud 101 – Understanding the Basics
	Defining cloud computing
	Introducing public, private, and hybrid clouds
	Introducing cloud service models – IaaS, PaaS, and SaaS
	Introducing multi-tenancy models
	Understanding cloud-based workloads
	Migrating on-premise applications to the cloud
	Building cloud-native applications

	Setting up your AWS account
	Creating a new AWS account
	Exploring the AWS management console

	Summary

	Chapter 2: Designing Cloud Applications
	Introducing cloud-based multitier architecture
	Designing for multi-tenancy
	Addressing data-at-rest security requirements
	Addressing data extensibility requirements

	Understanding cloud applications design principles
	Designing for scale
	Automating cloud infrastructure
	Designing for failure
	Designing for parallel processing
	Designing for performance
	Designing for eventual consistency

	Understanding emerging cloud-based application architectures
	Understanding polyglot persistence
	Understanding Lambda architecture
	Understanding Kappa architecture
	Deploying cloud-based machine learning pipelines
	Deploying cloud-based machine learning models

	Estimating your cloud computing costs
	A typical e-commerce web application
	Setting up your development environment
	Running the application
	Building a war file for deployment
	Application structure

	Summary

	Chapter 3: Introducing AWS Components
	AWS components
	Amazon compute-related services
	Amazon EC2
	Amazon EC2 container service
	AWS Lambda

	Amazon storage-related services
	Amazon S3
	Amazon EBS
	Amazon Glacier

	Amazon database-related services
	Amazon Relational Database Service (RDS)
	Amazon DynamoDB
	Amazon Redshift
	Amazon ElastiCache

	Amazon messaging-related services
	Amazon SQS
	Amazon SNS
	Amazon SES
	Amazon Pinpoint

	Amazon networking and content delivery services
	Amazon VPC (Virtual Private Cloud)
	Amazon Elastic Load Balancing
	Amazon Route 53
	Amazon CloudFront
	AWS Direct Connect

	Amazon management tools
	AWS CloudFormation
	Amazon CloudWatch
	AWS CloudTrail

	Amazon security, identity, and compliance services
	AWS Identity and Access Management (IAM)
	AWS Directory Service
	Amazon Certificate Manager
	AWS Key Management Service
	AWS WAF

	Amazon analytics-related services
	Amazon EMR
	Amazon Kinesis

	Amazon machine learning/AI-related services
	Amazon Machine Learning
	Other Amazon AI-related services

	Other Amazon services

	Managing costs on AWS cloud
	Setting costs-related objectives
	Optimizing costs on the cloud
	Strategies to lower AWS costs
	Monitoring and analyzing costs
	Choosing the right EC2 Instance
	Turn-off unused instances
	Using Auto Scaling
	Using reserved instances
	Using spot instances
	Using Amazon S3 storage
	Optimizing database utilization and costs
	Using AWS services
	Using queues

	Application development environments
	Development environment
	QA/test environment
	Staging environment
	Production environment

	Setting up the AWS infrastructure
	AWS Cloud deployment architecture
	AWS cloud construction
	Creating security groups
	Creating EC2 instance key pairs
	Creating roles
	Creating an EC2 instance
	Creating and associating Elastic IPs (EIP)
	Configuring the Amazon Relational Database Service (RDS)
	Installing and verifying the software stack

	Summary

	Chapter 4: Designing for and Implementing Scalability
	Defining scalability objectives
	Designing scalable application architectures
	Using AWS services for out-of-the-box scalability
	Using a scale-out approach
	Implementing loosely-coupled components
	Implementing asynchronous processing

	Leveraging AWS infrastructure services for scalability
	Using AWS CloudFront to distribute content
	Using AWS ELB to scale without service interruptions
	Using Amazon CloudWatch for Auto Scaling
	Scaling data services
	Scaling proactively
	Using the EC2 container service

	Evolving architecture against increasing loads
	Scaling from one to half a million users
	Scaling from half a million to a million users
	Scaling from a million to ten million users

	Event handling at scale
	Implementing a large-scale API-based architecture with AWS services
	Using Amazon API Gateway
	Using AWS Lambda
	Using Kinesis Streams
	Using Elasticsearch

	Analyzing streaming data in real time with Amazon Kinesis Analytics
	Using Amazon Kinesis Firehose
	Using Amazon Kinesis Analytics
	Building real-time applications with Amazon Kinesis Analytics

	Setting up Auto Scaling
	AWS Auto Scaling construction
	Creating an AMI
	Creating the Elastic Load Balancer
	Creating launch configuration
	Creating an Auto Scaling group

	Testing Auto Scaling groups

	Summary

	Chapter 5: Designing for and Implementing High Availability
	Defining availability objectives
	Nature of failures
	Setting up VPC for high availability
	Using ELB and Route 53 for high availability
	Instance availability
	Auto Scaling for increased availability and reliability
	Zonal Availability or Availability Zone Redundancy
	Region availability or regional redundancy

	Setting up high availability for application and data layers
	Implementing high availability in the application

	Using AWS for disaster recovery
	Using a backup and restore DR strategy
	Using a Pilot Light architecture for DR
	Using a warm standby architecture for DR
	Using a Multi-Site architecture for DR

	Testing disaster recovery strategy

	Setting up high availability
	AWS high availability architecture
	HA support for Elastic Load Balancer
	HA support for the Relational Database Service

	Summary

	Chapter 6: Designing for and Implementing Security
	Defining security objectives
	Understanding the security responsibilities
	Best practices in implementing AWS security
	Security considerations while using CloudFront
	CloudFront and ACM integration
	Understanding access control options
	Web Application Firewall
	Securing the application

	Implementing Identity Lifecycle Management
	Tracking AWS API activity using CloudTrail
	Logging for security analysis
	Using third-party security solutions
	Reviewing and auditing security configuration

	Setting up security
	Using AWS IAM to secure an infrastructure
	Understanding IAM roles

	Using the AWS Key Management Service
	Creating KMS keys
	Using the KMS key

	Application security
	Implementing transport security
	Generating self-signed certificates
	Configuring ELB for SSL

	Securing data at rest
	Securing data on S3
	Using the S3 console for server-side encryption
	Securing data on RDS

	Summary

	Chapter 7: Deploying to Production and Going Live
	Managing infrastructure, deployments, and support at scale
	Creating and managing AWS environments using CloudFormation
	Creating CloudFormation templates
	Building a DevOps pipeline with CloudFormation
	Updating stacks
	Extending CloudFormation

	Using CloudWatch for monitoring
	Using AWS solutions for backup and archiving
	Planning for production go-live activities
	Setting up for production
	AWS production deployment architecture
	VPC subnets
	Private subnet
	Bastion subnet
	Bastion host
	Security groups

	Infrastructure as Code
	Setting up CloudFormation

	Centralized logging
	Setting up CloudWatch

	Summary

	Chapter 8: Designing a Big Data Application
	Introducing big data applications
	AWS components used in big data applications

	Analyzing streaming data with Amazon Kinesis
	Best practices for serverless big data applications
	Best practices for using Amazon EMR
	Understanding common EMR use cases
	Lowering EMR costs
	Using Amazon EC2 Spot and Auto Scaling

	Best practices for distributed machine learning and predictive analytics
	Using Amazon SageMaker for machine learning
	Understanding Amazon SageMaker algorithms and features

	Security overview for big data applications
	Securing the EMR cluster
	Encryption
	Authentication
	Authorization

	Securing serverless applications
	Understanding serverless application authentication and authorization

	Configuring and using EMR-Spark clusters
	Summary

	Chapter 9: Implementing a Big Data Application
	Setting up an Amazon Kinesis Stream
	Creating an AWS Lambda function
	Using Amazon Kinesis Firehose
	Using AWS Glue and Amazon Athena
	Using Amazon SageMaker
	Summary

	Chapter 10: Deploying a Big Data System
	Using CloudFormation templates
	Creating a data lake using a CloudFormation template

	Authoring and deploying serverless applications
	Understanding AWS SAM
	Understanding the SAM template
	Introducing SAM Local
	Developing serverless applications using AWS Cloud9

	Automating serverless application deployments

	Using AWS Serverless Application Repository
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

