
To Interact with S3 from Amazon CLI:

Install the AWS CLI on Windows

1. Download the appropriate MSI installer.
○ Download the AWS CLI MSI installer for Windows (64-bit)
○ Download the AWS CLI MSI installer for Windows (32-bit)

2. Note
3. The 64-bit version of the AWS CLI does not currently work with

Windows Server 2008 (version 6.0.6002). Please use the 32-bit
installer with this version of Windows.

4. Run the downloaded MSI installer.
5. Follow the instructions that appear.

Confirm the installation
To confirm the installation, use the ​aws --version​ command at a
command prompt (open the START menu and search for “cmd” if
you’re not sure how to find the command prompt).
64 Bit
The CLI installs to C:\Program Files\Amazon\AWSCLI
1

2

C:\Program Files\Amazon\AWSCLI>aws --version

aws-cli/1.7.24 Python/2.7.9 Windows/8

32 Bit
The CLI installs to C:\Program Files (x86)\Amazon\AWSCLI
1

2

C:\Program Files (x86)\Amazon\AWSCLI>aws --version

aws-cli/1.7.24 Python/2.7.9 Windows/7

https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi

To be able to connect to your AWS account, you’ll need one
more step.
For Windows, the…
1 aws configure

…command is the fastest way to set up your AWS CLI installation.
Through ​aws configure,​ the AWS CLI will prompt you for four pieces of
information. The AWS Access Key ID and AWS Secret Access Key
are your account credentials. Those you will definitely need to provide.
You can probably leave the other two – region and output format – as
default for the time being.
1

2

3

4

5

aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Default region name [None]: us-west-2

Default output format [None]: json

That should be it. Try out the following command from your cmd
prompt and, if you have any s3 buckets, you should see them listed
1 aws s3 ls

Now to work with S3-

Managing Buckets

High-level ​aws s3​ commands support commonly used bucket operations, such as

creating, removing, and listing buckets.

Creating Buckets
Use the ​aws s3 mb​ command to create a new bucket. Bucket names must be unique

and should be DNS compliant. Bucket names can contain lowercase letters, numbers,

hyphens and periods. Bucket names can only start and end with a letter or number, and

cannot contain a period next to a hyphen or another period.
$ ​aws s3 mb s3://​bucket-name

Removing Buckets
To remove a bucket, use the ​aws s3 rb​ command.
$ ​aws s3 rb s3://​bucket-name
By default, the bucket must be empty for the operation to succeed. To remove a

non-empty bucket, you need to include the ​--force​ option.
$ ​aws s3 rb s3://​bucket-name​ --force
This will first delete all objects and subfolders in the bucket and then remove the bucket.

Note

If you are using a versioned bucket that contains previously deleted—but

retained—objects, this command will ​not​ allow you to remove the bucket.

Listing Buckets
To list all buckets or their contents, use the ​aws s3 ls​ command. Here are some

examples of common usage.

The following command lists all buckets.
$ ​aws s3 ls
 CreationTime Bucket

 ------------ ------

2013-07-11 17:08:50 my-bucket

2013-07-24 14:55:44 my-bucket2

The following command lists all objects and folders (prefixes) in a bucket.
$ ​aws s3 ls s3://​bucket-name
Bucket: my-bucket

Prefix:

 LastWriteTime Length Name

 ------------- ------ ----

 PRE path/

2013-09-04 19:05:48 3 MyFile1.txt

The following command lists the objects in ​bucket-name​/​path​ (in other words, objects

in ​bucket-name​ filtered by the prefix ​path​).
$ ​aws s3 ls s3://​bucket-name​/path
Bucket: my-bucket

Prefix: path/

 LastWriteTime Length Name

 ------------- ------ ----

2013-09-06 18:59:32 3 MyFile2.txt

Managing Objects

The high-level ​aws s3​ commands make it convenient to manage Amazon S3 objects

as well. The object commands include ​aws s3 cp​, ​aws s3 ls​, ​aws s3 mv​, ​aws s3

rm​, and ​sync​. The ​cp​, ​ls​, ​mv​, and ​rm​ commands work similarly to their Unix

counterparts and enable you to work seamlessly across your local directories and

Amazon S3 buckets. The ​sync​ command synchronizes the contents of a bucket and a

directory, or two buckets.

Note

All high-level commands that involve uploading objects into an Amazon S3

bucket (​aws s3 cp​, ​aws s3 mv​, and ​aws s3 sync​) automatically

perform a multipart upload when the object is large.

Failed uploads cannot be resumed when using these commands. If the

multipart upload fails due to a timeout or is manually cancelled by pressing

CTRL+C, the AWS CLI cleans up any files created and aborts the upload.

This process can take several minutes.

If the process is interrupted by a kill command or system failure, the

in-progress multipart upload remains in Amazon S3 and must be cleaned

up manually in the AWS Management Console or with the ​s3api

abort-multipart-upload​ command.

The ​cp​, ​mv​, and ​sync​ commands include a ​--grants​ option that can be used to grant

permissions on the object to specified users or groups. You set the ​--grants​ option to

a list of permissions using following syntax:
--grants ​Permission​=​Grantee_Type​=​Grantee_ID
 [​Permission​=​Grantee_Type​=​Grantee_ID​ ...]
Each value contains the following elements:

● Permission​ – Specifies the granted permissions, and can be set to ​read​,

readacl​, ​writeacl​, or ​full​.

● Grantee_Type​ – Specifies how the grantee is to be identified, and can be set to

uri​, ​emailaddress​, or ​id​.

● Grantee_ID​ – Specifies the grantee based on ​Grantee_Type​.

○ uri​ – The group's URI. For more information, see ​Who Is a Grantee?

○ emailaddress​ – The account's email address.

○ id​ – The account's canonical ID.

For more information on Amazon S3 access control, see ​Access Control​.

The following example copies an object into a bucket. It grants ​read​ permissions on the

object to everyone and ​full​ permissions (​read​, ​readacl​, and ​writeacl​) to the

account associated with ​user@example.com​.
$ ​aws s3 cp file.txt s3://​my-bucket​/ --grants
read=uri=http://acs.amazonaws.com/groups/global/AllUsers

full=emailaddress=user@example.com

To specify a non-default storage class (​REDUCED_REDUNDANCY​ or ​STANDARD_IA​) for

objects that you upload to Amazon S3, use the ​--storage-class​ option:
$ ​aws s3 cp file.txt s3://​my-bucket​/ --storage-class ​REDUCED_REDUNDANCY

http://docs.aws.amazon.com/cli/latest/reference/s3api/abort-multipart-upload.html
http://docs.aws.amazon.com/cli/latest/reference/s3api/abort-multipart-upload.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html#SpecifyingGrantee
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

