
www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Cloud Design
Patterns for AWS

Create highly efficient design patterns for scalability,
redundancy, and high availability in the AWS Cloud

Marcus Young

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Cloud Design Patterns for AWS

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-734-0

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Marcus Young

Reviewers
João Ferreira Loff

Robert M. Marks

Somanath Nanda

Philip O'Toole

Fred Stluka

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Nikhil Karkal

Content Development Editor
Merwyn D'souza

Technical Editor
Mitali Somaiya

Copy Editors
Trishya Hajare

Sonia Mathur

Alpha Singh

Project Coordinator
Neha Bhatnagar

Proofreaders
Joanna McMahon

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Marcus Young recently graduated with a degree in computer science and
mathematics before getting involved in system administration and DevOps. He
currently works in software automation using open source tools and technologies.
His hobbies include playing ice hockey and brewing homebrew beer. He also enjoys
hardware projects based on microcontrollers and single board computers.

I'd like to thank my beautiful wife for putting up with the many
projects and work items that make their way into my free time. Also
to my son who continues to inspire me to keep pushing myself.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

João Ferreira Loff has an MSc in Computer Science and Engineering with a major
in software engineering from Instituto Superior Técnico (www.tecnico.ulisboa.
pt), University of Lisboa, Portugal. His interest in Cloud computing emerged from
his master's thesis, where he researched predictive elasticity for Cloud applications.

He currently collaborates with the Distributed Systems Group at INESC-ID Lisboa
(www.inesc-id.pt), a nonprofit computer science and electronics research institute,
where he researches the latest developments in Cloud computing provisioning,
elasticity, and scalability.

As a part of his research he developed Vadara, a generic Cloud computing elasticity
framework that allows for the development of elasticity strategies that are decoupled
from Cloud providers (https://github.com/jfloff/vadara). The foundation
of this framework has been the subject of a published work at a top tier Cloud
computing conference.

You can read more about him at https://jfloff.github.io.

www.it-ebooks.info

http://www.it-ebooks.info/

Robert M. Marks is an experienced software developer and has spent over
12 years of his career working for a variety of software companies, ranging from
large companies, such as IBM, to small start-ups. He is passionate about crafting
well-tested software using best practices such as TDD, layered design, dependency
injection, and so on. He has contributed to various open source projects and was
the creator of JOGRE (Java Online Gaming Real-time Engine).

He is currently the head of engineering at Adoreboard, a unique platform that
measures how the world feels about your brand so that marketers can make
better business decisions. In his work at Adoreboard, he is a key pioneer for the
development of real-time scalable architectures using a combination of technologies,
including Enterprise Java, Spring Framework, Cloud computing, and NoSQL
databases such as MongoDB, Elasticsearch, Solr, and Redis.

Somanath Nanda has spent the past 3 and a half years in the IT industry
developing innovative methods to build new products which can fill the gap between
human requirements and technology. He is interested in learning new data usage
techniques, high-performance computing, and storage-related technologies. He has
worked in various Cloud and big data technologies and data analysis mechanisms.
His areas of interest include storage mechanisms of data and new algorithms and
computational strategies, followed by high-performance, various machine learning,
and data science techniques. Previously, he was involved in reviewing AWS
Development Essentials, 1st Ed, 2014.

I would like to thank my parents and friends for their support in
making this review successful.

www.it-ebooks.info

http://www.it-ebooks.info/

Philip O'Toole has developed software and led software development teams
for more than 15 years for a variety of applications including embedded software,
networking appliances, web services, and SaaS infrastructure. His most recent work
with AWS includes having led the infrastructure design and development of Loggly's
log analytics SaaS platform, which is entirely hosted in AWS. He is based in the San
Francisco Bay Area and can be found online at http://www.philipotoole.com.

Fred Stluka is an avid computer programmer and has been a mentor to hundreds
of people over his 30 plus years of professional experience. He is proud to be a "Fred"
in the very best sense of the word. For more information, see http://bristle.
com/~fred/MaximizingTheFredFactor.htm.

He wrote his first book in 1991, http://archive.adaic.com/docs/style-
guide/83style/style-t.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction	 1

Introduction to AWS	 2
Cloud computing service models	 3

Infrastructure as a Service	 3
Platform as a Service	 4
Software as a Service	 4

Benefits of moving to the Cloud	 4
Common problems encountered at AWS	 6

Underlying hardware failures	 6
Over-provisioning	 7
Under-provisioning	 7
Replication	 8
Redundancy	 8
Improving the end user experience	 9
Monitoring and log-gathering	 9

Summary	 9
Chapter 2: Basic Patterns	 11

Introducing Vagrant	 12
Snapshot pattern	 14
Stamp pattern	 15
Scale up pattern	 19
Scale out pattern	 23
On-demand disk pattern	 32

Volume resize	 34
Change volume from magnetic to SSD	 36
Increase I/O through software RAID	 36

Summary	 39

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Patterns for High Availability	 41
Multi-server pattern	 42
Multi-data center pattern	 48
Floating IP pattern	 50
Deep health check pattern	 55
Summary	 60

Chapter 4: Patterns for Processing Static Data	 61
High availability storage	 62
Direct storage hosting	 68
Private data delivery	 70
Content delivery networks	 73
Rename distribution pattern	 76
Summary	 77

Chapter 5: Patterns for Processing Dynamic Data	 79
Clone server pattern	 80
NFS sharing pattern	 85
State sharing pattern	 90
URL rewriting pattern	 93
Cache proxy pattern	 95
Summary	 99

Chapter 6: Patterns for Uploading Data	 101
Write proxy pattern	 102
Storage index pattern	 108
Direct object upload pattern	 112
Summary	 115

Chapter 7: Patterns for Databases	 117
Database replication pattern	 118
Read replica pattern	 121
In-memory cache pattern	 123
Sharding write pattern	 128
Summary	 131

Chapter 8: Patterns for Data Processing	 133
Queuing chain pattern	 135
Priority queue pattern	 142
Job observer pattern	 149
Summary	 157

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 9: Patterns for Operation and Maintenance	 159
Bootstrap pattern	 160
Cloud dependency injection pattern	 165
Stack deployment pattern	 169
Monitoring integration pattern	 174
Web storage archive pattern	 175
Weighted transition pattern	 178
Hybrid backup pattern	 183
Summary	 184

Chapter 10: Patterns for Networking	 185
OnDemand NAT pattern	 186
Management network pattern	 187
Functional firewall pattern	 189
Operational firewall pattern	 191
Web application firewall pattern	 192
Multiple load balancer pattern	 194
Summary	 195

Chapter 11: Throw-away Environments	 197
Infrastructure as code	 198

CloudFormation	 198
Packer	 199
Fugue	 199

Temporary development environments	 200
Continuous integration	 201
Summary	 202

Index	 203

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Amazon Web Services (AWS) is arguably the most cutting-edge Cloud provider
currently available. In the past, data centers were massive entities that often required
days to provide resources for applications. With AWS, this barrier is nonexistent.
Applications can be scaled almost instantly. Metrics can be gathered with little
or no configuration. Moving into the Cloud, however, might not be easy.

This book will act as a small reference guide, with detailed implementation examples,
to show how (and how not) to design your applications in a way that makes them
tolerant of underlying hardware failures, resilient against an unexpected influx of
data, and easy to manage and replicate. You will be able to see both the benefits and
limitations of the current services available to you from the AWS infrastructure.

What this book covers
Chapter 1, Introduction, introduces you to AWS and the problems encountered when
deploying and maintaining applications in the Cloud. Problems include upgrading
databases, data replication, cache issues, and zero downtime SLAs.

Chapter 2, Basic Patterns, demonstrates some examples of basic patterns such as
scaling instances, dynamic disk allocation, and more.

Chapter 3, Patterns for High Availability, demonstrates some examples of patterns
for highly available services such as data center replication, floating IP address
allocation, health checking, and more.

Chapter 4, Patterns for Processing Static Data, demonstrates some examples of patterns for
static data such as cache distribution, direct hosting, web storage hosting, and more.

Chapter 5, Patterns for Processing Dynamic Data, demonstrates some examples of
patterns for dynamic data such as state sharing, URL rewriting, rewrite/cache
proxying, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Chapter 6, Patterns for Uploading Data, provides some examples of patterns and
solutions for object uploading, storage indexing, and write proxying.

Chapter 7, Patterns for Databases, provides some examples of patterns for data
replication, in-memory caching, and sharding.

Chapter 8, Patterns for Data Processing, provides some examples of patterns for batch
processing issues such as queuing chains, priority queues, and job observers.

Chapter 9, Patterns for Operation and Maintenance, provides some examples of patterns
for server swapping, startup settings, backup patterns, and others.

Chapter 10, Patterns for Networking, provides some examples of patterns for multiload
balancers, operational and functional firewalls, and on-demand NAT networking.

Chapter 11, Throw-away Environments, is the closing chapter and provides some
examples of third-party tools such as CloudFormation, Terraform, and so on,
which aid in infrastructure design.

What you need for this book
•	 An Amazon AWS account
•	 A modern web browser such as Chrome, Safari, or Firefox
•	 An SSH client such as Putty

Who this book is for
This book is aimed at architects, solution providers, and those members of the
DevOps community who are looking to implement repeatable patterns for
deploying and maintaining services in the Amazon Cloud infrastructure. This book
could be used by those new to the DevOps movement, as well as those who have
embraced the movement and are looking to create reusable patterns. However, prior
experience using AWS is required as the book focuses more on the patterns and not
on the basics of using AWS.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows:"Once this volume is available, attach it as /dev/sdb to the instance."

A block of code is set as follows:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 echo el_s3_getTemporaryLink('MY_ACCESS_KEY', 'MY_SECRET_KEY',
 'a6408e3f-bc3b-4dab-9749-3cb5aa449bf6',
 'importantstuff.zip');

Any command-line input or output is written as follows:

[ec2-user@ip-10-203-10-123 ~]$ TEMP_URL=$(curl --silent -X POST -d
"username=admin&password=legit" http://10.203.10.123/register.php)

[ec2-user@ip-10-203-10-123 ~]$ curl -sL -w "%{http_code}\\n" $TEMP_URL

200	

[ec2-user@ip-10-203-10-123 ~]$ sleep 301 && curl -sL -w "%{http_code}\\n"
$TEMP_URL

403

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Introduction
The paradigm for development of applications has shifted in many ways over
the years. Instead of just developing pure applications, aimed at specific system
configurations, the trend has moved towards web applications. These applications
present a very different set of challenges not just for the developers, but also for the
people who manage the systems that host them. The reaction to this need to build,
test, and manage such web applications has been to develop an abstraction on top of
the hardware that allows for the ability to bring up entire virtualized environments
quickly and consistently.

Throughout these chapters, you will learn basic design principles for applications
and known issues. These may not be completely compatible with all application
types but should serve as a basic toolkit for bigger design patterns. It is also very
important to note that AWS adds new services all the time, some of which by default
solve these design patterns at the time of writing. If your software or services handle
sensitive data and have in-flight or at-rest requirements, be very careful to read how
each individual AWS-provided service handles data.

The topics that are covered in this chapter are:

•	 Introduction to AWS
•	 Cloud computing service models
•	 Benefits of moving to the Cloud
•	 Problems encountered with AWS

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

[2]

Introduction to AWS
Amazon Web Services (AWS) is a very large suite of Cloud services provided
by Amazon. AWS provides, at a base level, virtual machines and the services
surrounding them. Many Cloud-based virtual machine services such as Google
Compute Engine, DigitalOcean, Rackspace, Windows Azure, and so on provide
the ability to bring up a machine from a supported base operating system image
or snapshot, and it's up to the user to customize it further.

Amazon has made itself one of the leaders for Cloud-hosting by providing not
just virtual machines, but configurable services and software implementations of
hardware found in data centers. For most large-scale systems, the move to Cloud
infrastructure brings to the table a huge set of questions on how to handle issues
such as load balancing, content delivery networks, failover, and replication. The
AWS suite can handle the same issues that a physical data center can, usually for
a fraction of the cost. They can get rid of some of the red tape that comes with a
data center such as requesting provisioning, repairs, and scheduling downtime.

Amazon is constantly offering new services to tackle new and unique problems
encountered with Cloud infrastructure. However, this book may not cover every
service offered by Amazon. The services that this book will cover include:

•	 Computing and networking
°° Elastic Cloud Compute (EC2) virtual machines
°° Route 53 DNS provides local and global DNS look-ups
°° Virtual Private Cloud (VPC) isolated Cloud networks provide

internal networks
°° Elastic Load Balancers (ELB) automatically distribute traffic across

EC2 instances
°° Auto Scaling Groups (ASG) provide a way to scale instances up

and down based on schedules or metrics gathered via CloudWatch
from the EC2 instances attached to them

•	 Database
°° SimpleDB is a highly scalable NoSQL database
°° Relational Database Service (RDS) is a scalable SQL database apart

from MySQL, Oracle, PostgreSQL, or SQL Server
°° ElastiCache is an in-memory cache on top of Redis or MemCached

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

•	 Storage and content delivery
°° Simple Storage Service (S3) is a distributed storage network that

crosses data center boundaries with built-in redundancy
°° CloudFront is a CDN that distributes content based on latency

or location

•	 Application services
°° Simple Queue Service (SQS) is a fast, reliable, scalable, and fully

managed message queuing service

•	 Deployment and management
°° CloudFormation is a service that allows the provisioning and

updating of AWS resources through templates, usually JSON

•	 Logging
°° CloudWatch can monitor, display, and alert on instance metrics

and logs

For information on other services provided by AWS that are
not relevant to the information in this book visit http://aws.
amazon.com/products/.

Cloud computing service models
AWS falls under the category of Cloud computing called Infrastructure as a Service.
In Cloud computing there are three service models:

•	 Infrastructure as a Service (IaaS)
•	 Platform as a Service (PaaS)
•	 Software as a Service (SaaS)

Infrastructure as a Service
IaaS can be described as a service that provides virtual abstractions for hardware,
servers, and networking components. The service provider owns all the equipment
and is responsible for its housing, running, and maintenance. In this case, AWS
provides APIs, SDKs, and a UI for creating and modifying virtual machines, their
network components, routers, gateways, subnets, load balancers, and much more.
Where a user with a physical data center would incur charges for the hardware,
shelving, and access, this is removed by IaaS with a payment model that is per-hour
(or per-use) type.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

[4]

Platform as a Service
While AWS itself is an IaaS provider, it contains a product named ElasticBeanstalk,
which falls under the PaaS category for Cloud models. PaaS is described as the
delivery of a computing platform, typically an operating system, programming
language execution environment, database, or web server. With ElasticBeanStalk,
a user can easily turn a code into a running environment without having to worry
about any of the pieces underneath such as setting up and maintaining the database,
web server, or code runtime versions. It also allows it to be scaled without having to
do anything other than define scale policies through the configuration.

Software as a Service
AWS also provides a marketplace where a user can purchase official and third-party
operating system images that provide configurable services such as databases, web
applications, and more. This type of service falls under the SaaS model. The best
interpretation for the SaaS model is on-demand software, meaning that the user need
only configure the software to use and interact with it. The draw to SaaS is that there
is no need to learn how to configure and deploy the software to get it working in a
larger stack and generally the charges are per usage-hour.

The AWS suite is both impressive and unique in that it doesn't fall under any one of
the Cloud service models as described previously. Until AWS made its name, the need
to virtualize an entire environment or stack was usually not an easy task and consisted
of a collection of different providers, each solving a specific part of the deployment
puzzle. The cost of using many different providers to create a virtual stack might not
be cheaper than the initial hardware cost for moving equipment into a data center.
Besides the cost of the providers themselves, having multiple providers also created
the problem of scaling in one area and notifying another of the changes. While making
applications more resilient and scalable, this Frankenstein method usually did not
simplify the problem as a whole.

Benefits of moving to the Cloud
There are many different answers to why moving to a Cloud-hosted environment
might be beneficial but it depends on the end user. The shift may suit small teams but
for mid-sized teams the effort saved begins to outweigh the cost. I start at mid-sized
because this is the size that usually includes the two teams that benefit the most:

•	 The developers and testers
•	 Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

For a developer, the biggest benefit of Cloud providers is the ability to throw away
entire environments. In a traditional developer setting, the developers usually
develop their code locally, have access to a shared physical server, or have access
to a virtual server of some type. Issues that usually arise out of these setups are that
it's hard to enforce consistency and the servers can become stale over time. If each
developer works locally, inconsistency can arise very quickly. Different versions
of the core language or software could be used and might behave differently from
machine to machine. One developer might use Windows and prefer registry look-
ups while another developer may use Mac and prefer environment variables.

If the developers share a core server for development, other issues may arise such
as permissions or possibly trying to modify services independent of each other
causing race conditions. No matter what problems exist, known or unknown, they
could be solved by always starting from the same base operating system state.
The leading software for solving this issue is Vagrant. Vagrant provides the ability
to spin up and destroy a virtual machine from a configuration file along with a
configuration management suite such as Puppet, Chef, Docker, or Ansible. Vagrant
itself is agnostic to the Cloud hosting tool in the sense that it does not require AWS.
It can spin up instances at AWS given the credentials, but it can also spin up virtual
machines locally from VirtualBox and VMWare.

Vagrant gives back consistency to the developers in the sense that it takes a base box
(in AWS terms this is an Amazon Machine Image or AMI) and configures it via one
of the configuration suites or shell to create a running virtual machine every time it
is needed. If all the developers share the same configuration file then all of them are
mostly guaranteed to work against the same environment. That environment can be
destroyed just as easily as it was created, giving the resources back and incurring no
charges until needed again.

The bringing up and destroying of the instances becomes a small invisible piece of
their workflow. By virtue of enforcing a strategy like this on a team, a lot of issues
can be found and resolved before they make their way up the chain to the testing or
production environments.

More information on Vagrant can be found at
http://www.vagrantup.com.

The other team I mentioned that benefits from moving to the Cloud is the operations
team. This team differs greatly in responsibility from company to company but it is
safe to assume that the team is heavily involved with monitoring the applications and
systems for issues and possible optimizations. AWS provides enough infrastructure for
monitoring and acting on metrics and an entire book could be dedicated to the topic.
However, I'll focus only on auto scaling groups and CloudWatch.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

[6]

For AWS, an auto scaling group defines scaling policies for instances based on
schedules, custom metrics, or base metrics such as disk usage, CPU utilization,
memory usage, and so on. An auto scaling group can act on these thresholds
and scale up or down depending on how they are configured. In a non-Cloud
environment this same setup takes quite a bit of effort and depends on the
software whereas, it's a core concept to AWS.

Auto scaling groups also automatically register instances with a load balancer and
shift them into a round robin distribution. For an operations team, the benefit of
moving to Amazon might justify itself only to alleviate all the work involved in
duplicating this functionality elsewhere, allowing the team to focus on creating
deeper and more meaningful system health checks.

Throw-away environments can also be beneficial to the operations teams. A sibling
product to Vagrant, very recently released, is Terraform. Terraform, like Vagrant,
is agnostic to the hosting environment but does not solely spin up virtual instances.
Terraform is similar to CloudFormation in the sense that its goal is to take a central
configuration file, which describes all the resources it needs. It then maps them into
a dependency graph, optimizes, and creates an entire stack. A common example
for Terraform would be to create a production environment from a few virtual
machines, load balancers, Route53 DNS entries, and set auto scaling policies. This
flexibility would be nearly impossible in traditional hardware settings and provides
an on-demand mentality not just for the base application, but also for the entire
infrastructure, leading to a more agile core.

More information on Terraform can be found at
http://www.terraform.io.

Common problems encountered at AWS
The previous sections have tried to make light of issues found in traditional settings,
which might make moving to a Cloud infrastructure seem like a logical choice with
no ramifications. But this is not true. While Cloud infrastructure aims to resolve
many problems, it does bring up new issues to the user.

Underlying hardware failures
Some issues can be avoided while others may not. Some examples of issues that may
not be avoided, other than user error, are underlying hardware issues that propagate
themselves to the user. Hardware has a fail rate and can be guaranteed to fail at some
point while the benefit of IaaS is that, even though the hardware is abstracted away,
it is still a relevant topic to anyone using it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

AWS has a Service Level Agreement (SLA) policy for each service, which guarantees
that at their end you will meet a certain percentage of uptime. This implies a certain
amount of downtime for scheduled maintenance and repairs of the hardware
underneath.

As an AWS user this means you can expect an e-mail at some point during usage
warning about instances being stopped and the need to restart manually. While
this is no different from a physical environment where the user schedules their
own downtime, it does mean that instances can misbehave when the hardware is
starting to fail. Most of the replication and failover is handled underneath but if the
application is real-time and is stopped, it does mean that you, as a user, should have
policies in place to handle this situation.

Over-provisioning
Another issue with having virtual machines in the Cloud is over-provisioning.
An instance type is selected when an instance is launched that corresponds to
the virtualized hardware required for it. Without taking measures to ensure that
replication or scaling happens on multiple data centers, there is a very real risk that
when a new instance is needed, the hardware will not be immediately available.
If scaling policies are in effect that specify your application should scale out to a
certain number of instances, but all of those instances are in a data center nearing
its maximum capacity, the scaling policy will fail. This failure negates having a
scaling policy in place if it cannot always scale to the size required.

Under-provisioning
A topic that is rarely talked about but is very common is under-provisioning
and it is the opposite of over-provisioning. We will start with an example: say
we purchase a server for hosting a database and purchase the smallest instance
type possible. Let's assume that for the next few days this is the only machine
running in a specific rack in the AWS data center. We are promised the resources
of the instance we purchased but as the hardware is free, it gives us a boost in
performance that we get accustomed to unknowingly.

After a few days, the hardware that has been provisioned for other customers, now
gives us the resources we were promised and not the extra boost we got for free in
the background. While monitoring we now see a performance degradation! While
this database was originally able to perform so many transactions per second it now
does much less. The problem here is that we grew accustomed to the processing
power that technically was not ours and now our database does not perform the
way we expected it to.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

[8]

Perhaps the promised amount is not suitable but it is live and has customer data
within it. To resolve this, we must terminate the instance and change the instance
type to something more powerful, which could have downstream effects or even
full downtime to the customer. This is the danger of under-provisioning and it
is extremely hard to trace. Not knowing what kind of a performance we should
actually get (as promised in the SLA) causes us to possibly affect the customer,
which is never ideal.

Replication
The previous examples are extreme and rarely encountered. For example, in a
traditional hosting environment where there are multiple applications behind a load
balancer, replication is not trivial. Replication of this application server requires
registration with the load balancer and is usually done manually or requires
configuration each time. AWS-provided ELBs are a first-class entity just like the
virtual machines themselves. The registration between this is abstracted and can
be done with the click of a button or automatically through auto scaling groups
and start-up scripts.

Redundancy
Apart from replication, redundancy is another hot topic. Most database clustering
takes redundancy into effect but requires special configuration and initial setup. The
RDS allows replication to be specified at the time of setup and guarantees redundancy
and uptime as per its SLA. Their Multi-AZ specification guarantees that the replication
crosses availability zones and provides automatic failover. Besides replication, special
software or configuration is needed to store offsite backups. With S3, an instance may
synchronize with an S3 bucket. S3 is itself a redundant storage that crosses data center
sites and can be done via an AWS CLI or their provided API. S3 is also a first-class
entity so permissions can be provided transparently to virtual machines.

The previous database example hints towards a set of issues deemed high availability.
The purpose of high availability is to mitigate redundancy through a load balancer,
proxy, or crossing availability zones. This is a part of risk management and disaster
recovery. The last thing an operations team would want is to have their database go
down and be replicated to New Orleans during Hurricane Katrina. This is an extreme
and incredibly rare example but the risk exists. The reason that disaster recovery exists
and will always exist is the simple fact that accidents happen and have happened
when ill-prepared.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Improving the end user experience
Another set of problems to be solved is optimization to the end user. Optimization
in this case is proxying through cache servers so that high workloads can be handled
without spinning up more instances. In a scaling policy, high bandwidth would
lead to more instances, which incur cost and startup time. Caching static content,
where possible, can help mitigate high bandwidth peaks. Other ways to optimize
without caching might be to use Content Delivery Networks (CDNs) such as
the AWS-provided CloudFront service, which automatically choose servers
geographically close to the user.

Monitoring and log-gathering
The last set of problems to discuss in small detail is operational in nature. Most
applications generate logs and large software stacks with many disparate logs.
Third-party software such as Loggly and Splunk exist to aggregate and search log
collections but AWS has services dedicated to this as well. The preferred way is to
upload logs to CloudWatch. CloudWatch allows you to directly search and create
alerts on the data within logs. Since CloudWatch is a first-class AWS service, they
provide an SLA similar to the instance itself and the storage is scalable.

These are only some of the issues that someone shifting into AWS might encounter
or need to fortify their infrastructure against. Reading through the chapters of this
book will serve as a beginner's guide of sorts to help create a resilient infrastructure
against these issues and others.

Summary
Throughout this brief introduction to AWS, we learned not only the background
and industry shift into virtualized infrastructure, but also where AWS fits in with
some competitors. We not only discussed the kinds of problems AWS solves, but
also the kinds of problems that can be encountered in Cloud infrastructure. There are
countless unique processes to be solved with this dynamic paravirtual environment.
Picking up consistent patterns throughout this book will help to strengthen
applications of many forms against these issues. In the next chapter, we will go over
some basic design patterns. It is one of the easier topics and covers data backups
through instance snapshots, replication through machine imaging, scaling instance
types, dynamic scaling through CloudWatch, and increasing the disk size when
needed. These patterns help solve common provisioning issues for single instances.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[11]

Basic Patterns
The first patterns we will learn are considered to be the most rudimentary patterns
for Cloud infrastructure. Many patterns throughout this book will be very heavily
tied to AWS-specific services while the patterns here can be applied in many other
Cloud virtualization infrastructures that have similar capabilities. In this chapter we
will cover the following topics:

•	 Snapshot pattern
•	 Stamp pattern
•	 Scale up pattern
•	 Scale out pattern
•	 On-demand disk pattern

For this chapter, I will use the Amazon provided and supported Amazon Machine
Image (AMI) titled Amazon Linux AMI. The base AMI that you choose or the
machine type to launch the AMI is not important for this chapter, as long as it is a
Linux image. Images based on Windows have some inconsistencies and require special
steps to be taken to create reusable images and snapshots. While following along, if
you decide to use an alternate image, the code snippets may not work as expected.

For more information on the Amazon-curated Linux AMI, visit
http://aws.amazon.com/amazon-linux-ami/.

With AWS there is some redundancy built into image volumes. Volumes can be
thought of as hardware disk drives as far as the operating system is concerned, and
can be added and removed freely. The volumes have built-in redundancy over the
hardware underneath them, but are not replicated across availability zones. If the
hardware fails, the drives will keep their data but if the data center goes down, the
data will be lost.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[12]

To prevent loss of data, we should look at ways to secure the volumes themselves.
In a traditional data center, there is no single way to back up data. The data could be
backed up from software such as Acronis or Norton Ghost and stored on a separate
server. From a Cloud perspective, there is always a service provided to do this and
AWS calls it hard drive snapshots.

A snapshot is the state of a system at a point in time similar to the Logical Unit
Number (LUN) level copies of data. When a snapshot is created, the data is stored in
S3, away from the users' perspective.

A snapshot can be created at will but that does not mean that the data is usable from
a user or system perspective. An example of this would be creating a snapshot of
a volume that is currently doing high read/write operations such as a database.
Creating a snapshot should be done at points where I/O is at a minimum state and
no file locks exist, to ensure that any volumes created from these snapshots do not
have inconsistencies or issues during a recovery operation.

The reader might note that if the volume being snapshotted is a root volume from
which the system was booted, it can be turned into a bootable AMI. If the volume
is not bootable, such as a data volume, it cannot be turned into an AMI. The AWS
console helps this process by only allowing the user to create an AMI from an
instance as the assumption is that the instance has a bootable disk.

Introducing Vagrant
Throughout this book, the user will be creating running instances to follow along.
The AWS console is suitable for all examples, as well as Vagrant, and will be
demonstrated as such.

Vagrant, as described in the introduction, is a piece of software that has a configuration
file, or Vagrantfile, which describes how to run a virtual machine under a provider.
Vagrant, by default, does not have the AWS provider built in and requires a plugin
Vagrant-AWS. To install Vagrant, download the latest version from their website
http://www.vagrantup.com and install it as described in their HOWTO.

Once Vagrant is installed correctly, the AWS plugin can be installed as follows:

$ vagrant plugin install vagrant-aws

Installing the 'vagrant-aws' plugin. This can take a few minutes...

Installed the plugin 'vagrant-aws (0.5.0)'!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[13]

Every provider for Vagrant requires a base box, which is not applicable for AWS. A
box file is a compressed virtual machine disk with its configuration. For example,
with Virtualbox or Parallels it would be the configuration files and the virtual
machine disk file (VMDK). Because we cannot get access to a Linux AMI, as it is
hosted entirely in the AWS infrastructure, the author of the plugin states to create
a dummy box so that Vagrant can proceed as the API call uses an AMI described
in the configuration file. To add this dummy box, the following can be run:

$ vagrant box add dummy https://github.com/mitchellh/vagrant-aws/raw/
master/dummy.box

==> box: Adding box 'dummy' (v0) for provider:

 box: Downloading: https://github.com/mitchellh/vagrant-aws/raw/
master/dummy.box

 box:

==> box: Successfully added box 'dummy' (v0) for 'aws'!

If you wish to follow along using Vagrant, create a file called Vagrantfile with
contents similar to the following.

Please note that you, the reader, would provide the necessary
configuration such as access key, secret key, SSH private key
location, and so on:

Vagrant.configure("2") do |config|

 config.vm.box = "dummy"

 config.vm.provider :aws do |aws, override|

 aws.access_key_id = "MYACCESSKEY"

 aws.instance_type = "t2.micro"

 aws.secret_access_key = "MYSECRETKEY"

 aws.keypair_name = "MYKEYPAIR"

 #The AMI ID for 'Amazon Linux AMI 2014.09.1 (HVM)'

 aws.ami = "ami-b66ed3de"

 override.ssh.username = "ec2-user"

 override.ssh.private_key_path = "~/.ssh/mykey"

 end

end

After these steps are performed, an instance can be launched in EC2 by issuing
the command:

$ vagrant up --provider aws

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[14]

By default, the Amazon provided Linux AMI does not directly work
with Vagrant. Vagrant requires sudo to work properly and does
not work without a TTY unless explicitly enabled in their AMI. We
demonstrate how to resolve this in the Stamp pattern section but it is
described in more detail on the Vagrant wiki at https://github.
com/mitchellh/vagrant-aws/wiki/Amazon-Linux-AMI.

Snapshot pattern
The first basic pattern that we will cover is the snapshot pattern. This pattern is the
basis for many other patterns described throughout this book and includes the way
to create an S3-backed, point-in-time snapshot of a running instance from the AWS
console. To do this, we will select a running instance from the EC2 console and select
the root device volume from the instance pull-up frame, which will bring up a pop-
up for the volume as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

Click the EBS ID link from the pop-up. This will bring you to the Volumes section
of the AWS console with the previously selected volume in context. From here,
select the Actions drop-down and select Create Snapshot as shown in the following
screenshot:

You will now be prompted for a name and description, but they are optional so go
ahead and click Create. The next window will give you a success prompt with a
snapshot identifier. If you select the snapshot id, it will take you to the Snapshot
section of the AWS console where you may monitor the operation. Depending on
how long AWS takes to process the request, as well as the size of the volume, this
operation could take several seconds or several minutes.

From here, you have a restore point of sorts. The volume to the instance can tolerate
some level of failure underneath, while the snapshot created can tolerate much more
including failover. Since we created a snapshot from a root volume, we could create
an AMI from it and create an instance identical to the original. That leads us into the
stamp pattern.

Stamp pattern
The pattern covered here is called the stamp pattern because it covers how to
replicate a bootable operating system similar to a rubber stamp of sorts. By creating
an image of an operating system that is pre-configured for a purpose, it can be easily
replicated by simply bringing it up when needed in the same way a stamp works by
creating a template.

We will actually create a new AMI to use throughout this book from this method.
The AWS Linux AMI, by default, does not allow sudo without a TTY terminal.
There's a simple fix for this but it must be run every time we boot from the AWS
Linux AMI unmodified. Instead, we will make this fix to their image and package it
into our own AMI.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[16]

This is useful because Vagrant requires sudo to be usable for many of its features
such as folder synchronization, and provisioners such as Puppet and Chef. If you
were to try to run Vagrant on their base AMI, you would get an output such as:

$ vagrant up --provider aws

Bringing machine 'default' up with 'aws' provider...

==> default: Launching an instance with the following settings...

==> default: -- Type: t2.micro

==> default: -- AMI: ami-b66ed3de

==> default: -- Region: us-east-1

==> default: -- Keypair: cdr-pcs

==> default: -- Subnet ID: subnet-25383163

==> default: -- Security Groups: ["sg-621b8807", "sg-e814878d"]

==> default: -- Block Device Mapping: []

==> default: -- Terminate On Shutdown: false

==> default: -- Monitoring: false

==> default: -- EBS optimized: false

==> default: -- Assigning a public IP address in a VPC: false

==> default: Waiting for instance to become "ready"...

==> default: Waiting for SSH to become available...

==> default: Machine is booted and ready for use!

==> default: Rsyncing folder: /cygdrive/C/Users/myoung/repos/book => /
vagrant

The following SSH command responded with a non-zero exit status.

Vagrant assumes that this means the command failed!

mkdir -p '/vagrant'

Stdout from the command:

Stderr from the command:

sudo: sorry, you must have a tty to run sudo

To resolve this, launch a running instance from the AWS Linux AMI in the AWS
console. Once it is running ssh into it, proceed to run:

[ec2-user@ip-10-203-10-45 ~]$ sudo su -

[root@ip-10-203-10-45 ~]# echo 'Defaults:ec2-user !requiretty' > /etc/
sudoers.d/999-vagrant-cloud-init-requiretty

[root@ip-10-203-10-45 ~]# chmod 440 /etc/sudoers.d/999-vagrant-cloud-
init-requiretty

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

Once this is complete, we can prove that Vagrant will behave by running the
'provision' command. This will re-run all provisioners, including the rsync,
which failed earlier. Now that the fix has been made, Vagrant should behave as:

$ vagrant provision

default: Rsyncing folder: /Users/myoung/repos/book/ => /vagrant

Once we have made a change to the running instance, we will create an AMI from
it. To do that, first locate the running instance in the AWS console, and select Create
Image from the Actions drop-down.

After you select Create Image, it will ask you for a name and description. Name is
required, but description is optional so name it AWS Linux AMI – vagrant, and
click Create Image. You will be greeted with a confirmation prompt that has the
AMI ID for the new image. If you click on this identifier, it will take you to the AMI
property of the AWS console, with the context set to the image you created. Once
the status changes to available, we are ready to proceed. Also note that, just like
snapshots, the time it takes to create the image could take anywhere from a few
seconds to several minutes. From the command line where we used Vagrant
to create the running, we will terminate the instance:

$ vagrant destroy -f

default: Terminating the instance...

Now that the instance is terminated and we have a new AMI to work from as a
stamp, we will modify the Vagrantfile that we created to use the AMI ID of the
AWS Linux AMI – vagrant that we created. It should resemble the following code:

Vagrant.configure("2") do |config|

 config.vm.box = "dummy"

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[18]

 config.vm.provider :aws do |aws, override|

 aws.access_key_id = "MYACCESSKEY"

 aws.instance_type = "t2.micro"

 aws.secret_access_key = "MYSECRETKEY"

 aws.keypair_name = "MYKEYPAIR"

 #The AMI ID for 'Amazon Linux AMI - vagrant'

 aws.ami = "ami-f8840f90"

 override.ssh.username = "ec2-user"

 override.ssh.private_key_path = "~/.ssh/mykey"

 end

end

To check whether our changes worked, and that we now have a modified stamp
AMI to work from, we will create a new running instance. Run the vagrant
command again. It should succeed with no errors, as shown:

$ vagrant up --provider aws

Bringing machine 'default' up with 'aws' provider...

==> default: Launching an instance with the following settings...

==> default: -- Type: t2.micro

==> default: -- AMI: ami-f8840f90

==> default: -- Region: us-east-1

==> default: -- Keypair: cdr-pcs

==> default: -- Subnet ID: subnet-25383163

==> default: -- Security Groups: ["sg-621b8807", "sg-e814878d"]

==> default: -- Block Device Mapping: []

==> default: -- Terminate On Shutdown: false

==> default: -- Monitoring: false

==> default: -- EBS optimized: false

==> default: -- Assigning a public IP address in a VPC: false

==> default: Waiting for instance to become "ready"...

==> default: Waiting for SSH to become available...

==> default: Machine is booted and ready for use!

==> default: Rsyncing folder: /Users/myoung/repos/book/ => /vagrant

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

What we have effectively done is central to any AWS workflow, that is, we made a
change to the base image, and packaged it as our own. Many teams that utilize AWS
for their systems, manage many AMIs for specific purposes. The concept of creating
an AMI to use across this purpose is the stamp pattern.

Scale up pattern
The scale up pattern is a method that allows a server to change size and
specifications dynamically, and as needed. Imagine a running web instance that does
a bit of computation per request. Initially, it performs extremely well, but over time
traffic becomes heavier and causes the computation time to increase. A couple of
options exist to solve this problem, but all have their own benefits and issues.

One option could be to spin up a second instance (or scale outwards), but this means
double the cost, as well as any maintenance required to be performed on each server.
For applications in the Cloud, it is important not only to think of the cost involved in
the server, but also the implied costs, such as operational. The easiest solution might
be to change the specs on the current server or scaling up. A benefit of this method
is that, if the processing peak can be predicted, such as the beginning of the month
or the end of the month transactions, this method can be automated by using the
AWS-provided API.

There are some cautions to note from this method, however. If the instance is
performing poorly in ways that are not due to CPU or RAM usage, for example,
this method will not help. Another reason might be that the server cannot afford
downtime. For these examples, scaling out instead of up is a better solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[20]

First we will start up another running instance from either the AWS Linux AMI, or
the Vagrant-compatible AMI. Once it is running, select the instance from the AWS
console, and select Stop instance from the Actions drop-down, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

It will prompt you to confirm, so go ahead, and click Yes Stop. This will safely shut
down the virtual machine. Once this image is stopped, we can now modify the
instance type. The previous instance was started as a t2.micro, which has 1 GB of
RAM. Once stopped, the instance type can now be changed. From the Actions
drop-down menu, again select Change Instance Type.

You will now be greeted with a prompt for the type. Select t2.small as the type, and
click Apply.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[22]

In the AWS console, you will notice that the Instance Type column for this instance
now shows t2.small. Select Start instance from the Actions drop-down, select
Yes Start from the confirmation and the instance will begin to start up with the
same behavior as before, albeit with 2 GB RAM and a few other differences in the
hardware specs.

With minimal downtime, we have now made the instance more powerful without
incurring any additional cost, aside from the operational cost to ourselves and the
difference in the costs between the instance types. At any point in the future this
instance can be downgraded in specifications with the same steps to lower the
specifications and save on the cost.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Scale out pattern
We have discussed up to this point how to scale up in resources on an instance but
not how to scale out. Scaling up an instance can only help in a few limited examples,
but the more important issue is how to add processing power without affecting the
client or the systems interacting with our services. To do this, we will tie together a
few different EC2 resources. The resource diagram, as shown, will help to visualize
what we are trying to accomplish:

The general process for this pattern is:

•	 Create an elastic load balancer with forwarding ports and health checks
•	 Create a launch configuration for the instance
•	 Create an auto scaling group with configured CloudWatch alarms and

scaling policies

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[24]

To demonstrate this, we will first create an elastic load balancer. Browse to the Load
Balancers portion of the AWS console and select Create Load Balancer as seen in the
following screenshot:

At the Define Load Balancer prompt, give it a descriptive name in the Load Balancer
Name text box and set it to listen on port 80 for both the Load Balancer Port and the
Instance Port. Then select Continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

At the Configure Health Check, set the Ping Port to 80 and set the Ping Path to
/index.html. Select Continue, followed by the rest of the Add EC2 Instances,
Add Tags, and Review tabs, to finish creating this load balancer.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[26]

Next, we will browse to the Launch Configuration of the AWS console under
auto scaling groups. Create a new Launch Configuration, as determined by your
networking setup including Instance Type, but make sure to expand Advanced
Details on the Configure details tab of the creation page. Enable CloudWatch
Monitoring and add the user data:

#!/bin/bash

yum install –y httpd stress

service iptables stop

echo welcome > /var/www/html/index.html #Makes a valid ELB health chk

service httpd start

Next, create a scaling group in the Create Auto Scaling Group section of the AWS
console, which references the Launch Configuration that you just created. Ensure
that you enable CloudWatch via the checkbox Enable CloudWatch detailed
monitoring and set it to receive traffic from the load balancer that you created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Lastly, before you finish the auto scaling group creation, check the Use scaling
policies to adjust the capacity of this group radio button in the Configure scaling
policies tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[28]

Set the scale between option to 1 and 2 instances, respectively. Select the Add new
alarm button next to the Increase policy.

In the Create Alarm pop-up tab, create an Increase policy that adds 1 instance if the
CPUUtilization metric average is above 75 percent for 1 period(s) of 5 minutes.

Finally, add a Decrease policy that removes 1 instance if the CPUUtilization
metric is below or equal to 25 percent for 3 periods of 1 minute as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

You can proceed as needed to finish the auto scaling group. You will notice after
creation that a new instance is beginning to start in the auto scaling groups portion
of the AWS console. When it has completed its user data, it will register to the load
balancer that you created. Once its status is InService in the load balancer, you
can confirm that everything is currently configured correctly by browsing to the
load balancer's DNS record (located on the main tab for the load balancer in the
AWS console).

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[30]

Here's an example of what you should see using the curl command:

$ curl --silent http://internal-myapp-652412119.us-east-1.elb.amazonaws.
com/

Welcome

Now for the fun part: we will test the scaling policy by forcing the CPU of the
instance to run at full utilization. We will use the stress command to do this and
set it to run for more than 300 seconds. You may retrieve the connection information
from the Instances tab of the AWS console. Once you are able to SSH into this virtual
machine, we will run the stress command similar to:

[ec2-user@ip-10-203-10-55 ~]$ stress --cpu 1 --timeout 240

Let this run for its entirety and the instance will go into an alarm state. Back in the
Create Auto Scaling Group portion of the console, refresh the Scaling History tab.
Shortly, you should see a new entry that a new instance is being created similar to
the one shown in the following screenshot:

Our stress test caused the CPU utilization to cross our alarm boundary and the auto
scaling group increased the size to respond. Here, the new instance will run the
same user data as the first instance and register to the load balancer. When the load
balancer finishes the health checks, the new instance will be used appropriately to
lower the load off the original. By now the stress command that we issued has
finished, or will finish shortly. Once this has completed and another 180 seconds
have passed, the Decrease policy will respond to the CPU utilization being less than
25 percent and terminate the original instance as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

It is important to note at this point that auto scaling groups terminate the oldest
instance first, or the instance that is the cheapest to terminate.

The auto scaling termination policy is not quite this simple in practice
and is subject to change. The latest information on the termination
policy can be found on the documentation page at http://docs.
aws.amazon.com/AutoScaling/latest/DeveloperGuide/
AutoScalingBehavior.InstanceTermination.html.

The newest instance will stay in service for the load balancer to use. This is not an
issue for our example, but if your servers require manual processes of any kind,
havoc might ensue. We have now successfully configured our system to scale
outwards as needed.

This example uses metrics based on CPU utilization that might not be
applicable for an HTTP server, such as the one we have configured.
CloudWatch enables you to generate metrics based on any parameter
you wish, so it might be more relevant, if not more difficult, to generate
metrics based on response time, or the number of requests in a given
point and alerts on these. Information on publishing custom metrics
can be found at the AWS Developer guide at http://docs.aws.
amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
publishingMetrics.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[32]

On-demand disk pattern
The on-demand disk pattern is similar in nature to the scale up pattern, in that it
operates on an already running instance and requires some downtime. This pattern
is a manual process and might be avoided in automated processes such as the scale
out pattern, as the downtime involved might cause alarm or scaling policies to
trigger, causing some unwanted side effects.

The benefit of on-demand disk size is that you do not need to plan ahead for disk
resources. Once the instance is running, you can simply resize its volume when it
gets to its maximum capacity. Another example would be in the event where your
application is very I/O heavy. At first your instance performs very well, but over
time, with increased usage, the I/O operations take longer. An easy way to get more
performance out of the base volume might be to enable RAID and stripe the volume.

First we will launch the AWS Linux AMI with an additional 20 GB EBS volume.
Ensure that the Volume Type is Magnetic and it is set to Delete on Termination
as shown in the following screenshot:

Once it is running, we will need to format and mount the drive for usage. We will
mount it to /opt/data:

[ec2-user@ip-10-203-10-237 ~]$ sudo su -

Last login: Sun Nov 9 13:32:35 UTC 2014 on pts/0

[root@ip-10-203-10-99 ~]# lsblk # view block devices attached

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

xvda 202:0 0 8G 0 disk

└─xvda1 202:1 0 8G 0 part /

xvdb 202:16 0 20G 0 disk

[root@ip-10-203-10-237 ~]# mkfs -t ext4 /dev/xvdb #format the secondary
drive as ext4 filesystem

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=

OS type: Linux

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

1310720 inodes, 5242880 blocks

262144 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=2153775104

160 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
2654208,

 4096000

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@ip-10-203-10-237 ~]# echo $'/dev/xvdb\t/opt/data\text4\
tdefaults,nofail\t0\t2' >> /etc/fstab

[root@ip-10-203-10-237 ~]# mkdir /opt/data && mount /opt/data

Now that we have the EBS volume mounted to /opt/data, we will write a file to the
disk to ensure that a resize retains the data:

[root@ip-10-203-10-99 ~]# time dd if=/dev/zero of=/opt/data/test bs=512k
count=200

200+0 records in

200+0 records out

104857600 bytes (105 MB) copied, 0.0667198 s, 1.6 GB/s

real 0m0.068s

user 0m0.000s

sys 0m0.064s

[root@ip-10-203-10-99 ~]# time dd if=/dev/zero of=/opt/data/test bs=512k
count=200

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[34]

200+0 records in

200+0 records out

104857600 bytes (105 MB) copied, 2.63703 s, 39.8 MB/s

real 0m2.648s

user 0m0.000s

sys 0m0.076s

Volume resize
First we will unmount the volume from the running instance with the umount
command:

[root@ip-10-203-10-99 ~]# umount /opt/data

After the volume is unmounted, select the instance from the console, and select the
20 GiB drive attached as /dev/sdb. This will take you to the corresponding volume
in the Volumes section of the console. Click the Actions drop-down, and select
Create Snapshot, as described in the snapshot pattern. Once this snapshot is 100
percent available for use, detach the /dev/sdb volume from the instance as shown
in the following screenshot:

To increase the size of the volume, select the snapshot, and select Create Volume
from the Actions menu. Here, select a larger size such as 30 GB, and click Create.
When the new volume is available, click Attach Volume from the Actions menu,
and select the instance that we detached, ensuring you attach it back to the device we
detached it from, or in this case /dev/sdb. Back inside the virtual machine, you will
remount the device, check it for errors, resize the partition, check the new size, and
ensure that we didn't lose any data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

[root@ip-10-203-10-99 ~]# lsblk # view block devices attached

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

xvda 202:0 0 8G 0 disk

└─xvda1 202:1 0 8G 0 part /

xvdb 202:16 0 20G 0 disk

[root@ip-10-203-10-99 ~]# e2fsck -f /dev/xvdb

e2fsck 1.42.9 (28-Dec-2013)

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

/dev/xvdb: 13/1310720 files (7.7% non-contiguous), 215923/5242880 blocks

[root@ip-10-203-10-99 ~]# resize2fs /dev/xvdb

resize2fs 1.42.9 (28-Dec-2013)

Resizing the filesystem on /dev/xvdb to 7864320 (4k) blocks.

The filesystem on /dev/xvdb is now 7864320 blocks long.

[root@ip-10-203-10-99 ~]# mount -a

[root@ip-10-203-10-99 ~]# df -mh /opt/data

Filesystem Size Used Avail Use% Mounted on

/dev/xvdb 30G 394M 28G 2% /opt/data

[root@ip-10-203-10-99 ~]# ls -alh /opt/data

total 351M

drwxr-xr-x 3 root root 4.0K Nov 9 21:06 .

drwxr-xr-x 4 root root 4.0K Nov 9 21:03 ..

-rw-r--r-- 1 root root 250M Nov 9 21:05 test

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[36]

Change volume from magnetic to SSD
One method to get some increased I/O performance is to change the volume from
magnetic to a general purpose SSD, which has a throughput of about 128 MB/s. To
do this, select the snapshot that we created for the volume, and click Create Volume
from the Actions drop-down menu. Once this volume is available, attach it as /dev/
sdb to the instance. From the running instance we will mount it back, ensure that no
loss of data has occurred, and check for an increase in throughput:

[root@ip-10-203-10-99 ~]# mount -a

[root@ip-10-203-10-99 ~]# ls /opt/data

lost+found test

[root@ip-10-203-10-99 ~]# time dd if=/dev/zero of=/opt/data/test1 bs=512k
count=200

200+0 records in

200+0 records out

104857600 bytes (105 MB) copied, 1.5918 s, 65.9 MB/s

real 0m1.600s

user 0m0.008s

sys 0m0.068s

Here, we can see that we nearly doubled our throughput.

Increase I/O through software RAID
If you wish to read more about the different software RAID levels
and how they perform in the AWS virtualized environment, more
information can be found at their User Guide at http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/raid-config.html.

As seen, the throughput for the new file was about 1.6 GB/s for creation and about
40 MB/s for a rewrite. Magnetic EBS volumes are estimated between 40 and 90
MB/s. This is a very rough estimation, but will help to show even the most basic
improvement of throughput. What we will do now is change the 20 GB magnetic
drive into a software defined RAID0 drive, without losing any data. We cannot
simply create a RAID device from a single snapshot, since the snapshot that we
created was for a non-RAID ext4 filesystem. What we will do instead, is add two
additional volumes to the host, configure them as RAID, and then move the data
from one drive to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

First we will create two new magnetic drives of 10 GB and attach them to the
instance as /dev/sdc and /dev/sdd respectively. Once they are attached, we will
format them and set them up from the instance into a software RAID0 configuration:

[root@ip-10-203-10-99 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

xvda 202:0 0 8G 0 disk

└─xvda1 202:1 0 8G 0 part /

xvdb 202:16 0 20G 0 disk /opt/data

xvdc 202:32 0 10G 0 disk

xvdd 202:48 0 10G 0 disk

[root@ip-10-203-10-99 ~]# mdadm --create --verbose /dev/md0
--level=stripe --raid-devices=2 /dev/xvdc /dev/xvdd

mdadm: chunk size defaults to 512K

mdadm: Defaulting to version 1.2 metadata

mdadm: array /dev/md0 started.

[root@ip-10-203-10-99 ~]# mkfs.ext4 /dev/md0

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=128 blocks, Stripe width=256 blocks

1310720 inodes, 5242624 blocks

262131 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=2153775104

160 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
2654208,

 4096000

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Patterns

[38]

Writing superblocks and filesystem accounting information: done

[root@ip-10-203-10-99 ~]# mkdir /opt/newdata

[root@ip-10-203-10-99 ~]# sed -i.bak '$ d' /etc/fstab #rm old drive mount

[root@ip-10-203-10-99 ~]# echo $'/dev/md0\t/opt/data\text4\
tdefaults,nofail\t0\t2' >> /etc/fstab

[root@ip-10-203-10-99 ~]# mount /dev/md0 /opt/newdata

[root@ip-10-203-10-99 ~]# cp -r /opt/data/* /opt/newdata/

[root@ip-10-203-10-99 ~]# ls /opt/newdata/

lost+found test

[root@ip-10-203-10-99 ~]# umount /opt/data /opt/newdata && rm -rf /opt/
newdata/ && mount -a

[root@ip-10-203-10-99 ~]# time dd if=/dev/zero of=/opt/data/test1 bs=512k
count=200

200+0 records in

200+0 records out

104857600 bytes (105 MB) copied, 0.0663928 s, 1.6 GB/s

real 0m0.067s

user 0m0.000s

sys 0m0.064s

[root@ip-10-203-10-99 ~]# time dd if=/dev/zero of=/opt/data/test1 bs=512k
count=200

200+0 records in

200+0 records out

104857600 bytes (105 MB) copied, 1.71824 s, 61.0 MB/s

real 0m1.729s

user 0m0.000s

sys 0m0.076s

As seen here, we increased the throughput to nearly double by utilizing software
level RAID0 over a single magnetic volume.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Summary
In this chapter, we went through some very basic Cloud patterns for instance
resiliency. We covered how to make volume level backups of volumes, to help guard
against data loss across availability zone failures. We also covered how to create base
AMIs, which can be reused as stamps. We touched upon some examples of scaling
up by increasing virtual machine hardware specs, and how to scale horizontally
using instance alarms and auto scaling groups. Lastly, we covered how to improve
performance and modify the size of instance volumes without shutting down the
running instance.

In the next chapter, we will cover some more complicated patterns aimed towards
highly-available applications, or applications that cannot have downtime.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability
A very important topic, for most operations teams, is how to keep the systems
responsive. Many things can cause an application to behave improperly with the
end user, and there are a lot of different methods to handle these issues. The types of
preventive measures used depend heavily on the purpose of that application in the
system. Many applications are moving towards a microservice approach, in which
the system is divided into smaller subsystems that have one task. This microservice
approach is similar to software development life cycles, in which large sections of
code are divided into smaller sections. This breaking up of responsibilities makes
testing them a bit simpler in that each subsystem has a very specific and predictable
job. Another benefit from an operational standpoint is that the system can be scaled
horizontally, depending on which part is the bottleneck.

Breaking up the application into scalable pieces creates an issue. Similarly, there
are many other issues that might arise for the operations team to handle. As stated
in the introductory chapter, IaaS is great in that it leverages a lot of abstractions to
the core hardware itself, to allow unique solutions to common problems. Although
the hardware is abstracted away, it is in no way a perfect system, and can cause
problems to the systems and applications within the infrastructure itself.

Power outages, hardware failures, and data center upgrades are just a few of the
many problems that will still bubble up to the teams responsible for the systems.
Data center upgrades are common, and given enough time at AWS, any team will
get an e-mail or notification stating that some servers will shut down, or experience
brownouts, or small outages of power. The best way to handle these is to span across
data centers so that, if a single location experiences issues, the systems will continue
to respond.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[42]

Multi-server pattern
Consider a two-tier architecture in which there is a User Interface (UI) instance that
connects to a database instance. Now suppose that the system gets a large burst of
traffic. Using the scale out pattern discussed in Chapter 2, Basic Patterns, the operations
team can manually or automatically add more UI instances to the load balancer to
mitigate the flux in traffic. This server redundancy pattern is the multi-server pattern.
This pattern includes a healthcheck on the instance so that, if one of the instances that
the load is being distributed across is misbehaving, it will not continue to route into it.

One might note that this pattern is similar to the scale out pattern
except that it is not dynamic in nature. In this pattern, we are
discussing the details of adding horizontal scalability in a much
simpler example.

A few things should be noted before we continue, however. It has been found, in my
personal usage as well as documented cases, that the servers should be configured in
an N+1 configuration. If a single front-end is acceptable, then it should be configured
for two. This allows for hiccups and brown-outs, as well as an influx of traffic into
the system with minimal effect to the end users.

Lastly, be very careful when it comes to servers that contain session data or data of
any kind. If it is a UI that requires sessions, it should be configured for an external
session manager, such as the AWS-provided ElastiCache. If the system is responsible
for data, such as a database, it should be configured for data replication and sharing,
such as enterprise clustering. These are not covered in this pattern.

For more information on ElastiCache visit http://aws.amazon.com/
elasticache.

In this example, we will cover how to add a bit of redundancy and processing power
through multiple instances using a load balancer. The general workflow will be
as follows:

•	 Create an EC2 instance that services HTTP content
•	 Create an ELB that services traffic to the EC2 instance
•	 Clone the EC2 instance via the stamp pattern
•	 Add the newly created instance to the ELB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

First, let's configure a Linux server from the AWS Linux AMI to serve some static
HTTP content. Launch an instance from the AWS EC2 console based on the AWS
Linux AMI, as per your environment. Once it is running, we will SSH into it and
configure it to be an HTTP server.

Now that it is an HTTP server that listens on port 80, we will create a new load
balancer for this instance. From the AWS EC2 console, select Load Balancers under
NETWORK & SECURITY.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[44]

Create a new load balancer by selecting the Create Load Balancer option. At the
Define Load Balancer tab, configure it as per your environment, ensuring that it
has a listener for port 80 via HTTP. Click Continue.

On the Configure Health Check tab, create a health check for port 80 via HTTP to '/'.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

Continue with any options that pertain to your environment for both Select Subnets
and the Assign Security Groups tabs. Then click Continue. At the Add EC2
Instances tab, assign the instance that we configured previously and click Continue
as shown in the following screenshot:

Continue with any options that pertain to your environment for the Add Tags
tab and click Continue. Lastly, click Create on the Review tab to create the load
balancer. You will then be greeted with the success prompt, which you can close.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[46]

Select the load balancer you created in the list and select the Instances tab to see the
status of the instances that are assigned to the load balancer. Once the Status shows
InService, as shown in the following screenshot, we are ready to move on:

Select the instance ID for the only instance in the load balancer, under the Instance
ID column. From here, create an AMI of the instance as described in the Stamp
pattern section from Chapter 2, Basic Patterns. Once the AMI is complete and shows
available in the Status column of the AMI's section of the EC2 console, select Launch
and follow the steps from the stamp pattern to launch a new instance from this AMI.

Once complete, navigate back to the load balancer shown in the preceding screenshot
by clicking Load Balancers under NETWORK & SECURITY. Select the load
balancer you created in the list and select the Instances tab. Select Edit Instances
on this tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

At the Add and Remove Instances prompt, add the new instance that we just
created and click Save.

A periodic manual refresh of the page may be
required to display the change in Status.

Wait until the Status shows InService for both instances as indicated in the
following screenshot:

If you were to watch the requests for both the instances and issue requests to the load
balancer, you would see that it is equally distributed across both. There is more to the
load balancing algorithm than round-robin but that will not be discussed in detail here.
What we have done, however, is added some resiliency to the servers in that, if one
were to go down, the other would still be able to serve requests to the end user.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[48]

More information on the specifics of the load balancing algorithm
used for AWS Elastic load balancers can be found at http://
docs.aws.amazon.com/ElasticLoadBalancing/latest/
DeveloperGuide/TerminologyandKeyConcepts.html.

Let's see what happens when we cause an instance to fail a health check. SSH into
any of the two instances configured in the load balancer and run the following code:

[ec2-user@ip-10-203-10-191 ~]$ sudo service httpd stop

Stopping httpd: [OK]

[ec2-user@ip-10-203-10-191 ~]$

If you refresh the Instances tab of the load balancer (the amount of time is
determined by the health check), you will notice that the instance we just stopped,
that is, the httpd service, for now shows OutOfService for its Status column,
as expected.

If you issue a request to the load balancer, it will continue to respond as though
nothing has happened. This completes the multi-server pattern.

Marc-win8:~ $ curl internal-myinstance-37934186.us-east-1.elb.amazonaws.
com

welcome

Multi-data center pattern
The multi-server pattern guarantees resiliency at the server level, but can introduce
an edge case. If the data center that the UI instances are in, goes under maintenance
or has hardware failures that propagate upwards to the instances themselves, they
might affect the end users, which is not acceptable. The UI instances cannot or
should not be clustered, but should be present across different availability zones.
This spanning across availability zones presents datacenter redundancy and is
presented in the multi-data center pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

The steps for this pattern are nearly identical to the steps in the previous pattern
except for two key differences. The first key difference is that the load balancer
itself must cross multiple availability zones through subnets.

The other key difference is that the instances attached to the load balancer should be
in different availability zones. Since the load balancer is in two zones, the instances
should be in each zone as well.

The ELB is a highly available AWS-provided service and is protected against
terminations. This means that if a data center goes into maintenance mode, or has
hardware failures, the end users will not experience any downtime. It is important
to know that any databases that are not controlled by AWS services might take
additional work to cross availability zones, such as clustering, to slave nodes that
are in a different zone.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[50]

Floating IP pattern
Another set of issues to tackle is that of a system without a load balancer. Suppose a
single server exists with an external IP address to reach it. A new set of patches have
come out, or a new release to the operating system core is required. The instance
cannot stop responding to the external users or systems communicating with the
instance, so the patches cannot be made in-place.

A traditional way to resolve this might be to change the DNS entry to a temporary
instance that is not being upgraded. But this might cause issues if the external
systems do not use the DNS entry, or have cached it and try to continue to talk to the
instance being modified. The pattern that can be used to mitigate this is the floating
IP pattern. In this pattern, an Elastic IP (EIP) is used and is assigned to the original
server to be modified.

When the modifications are required, the instance is cloned using the stamp pattern
and the EIP is assigned to that instance. This EIP is immediate and does not affect
DNS or any instances that might use DNS lookups during this time. When the
modifications are complete, the EIP can be configured back to the original instance.

The general workflow of this pattern will be:

•	 Create an EC2 instance that serves HTTP content to an end user
•	 Assign a floating IP address to the EC2 instance
•	 Create a secondary EC2 instance that serves HTTP content to the end users
•	 Swap the floating IP address to the secondary EC2 instance
•	 Perform modifications to the original EC2 instance
•	 Swap the floating IP address back to the original EC2 instance once

modifications are complete

First, we will launch a new instance of the AWS Linux AMI. Follow the traditional
steps for launching an instance for your environment. Once it is complete, we will
configure it to have an Elastic IP. From the AWS EC2 console, select Elastic IPs under
NETWORK & SECURITY. From this new frame, select Allocate New Address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

At the Allocate New Address prompt, make no changes and select Yes, Allocate.

A new Elastic IP will be created for you and added to the list. Select it and click
Associate Address.

At the Associate Address prompt, find your instance either by its Instance ID, or by
searching its name in the Instance field. Then click Associate.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[52]

We will not configure the instance as shown in the next screenshot:

If you were to test the Elastic IP we just associated, using the following code, it
should perform as expected. Note that the server responds from Apache 2.2.8,
as it will be useful later:

$ curl http://54.173.188.206

welcome

$ curl –v http://54.173.188.206 2>&1 | grep \<\ Server:

< Server: Apache/2.2.28 (Amazon)

It should be noted that if the instance being modified contained
any kind of session data for the end user, they may experience
some side effects, such as having to log in again, and so on. This
is not relevant to the current scenario but might be relevant in
applications of this pattern.

From the AWS EC2 console, create an AMI of the instance, as described in the Stamp
pattern section from Chapter 2, Basic Patterns. Once the AMI is complete and shows
available in the Status column of the AMI's section of the EC2 console, select Launch
and follow the steps from the stamp pattern to launch a new instance from this AMI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Once this instance is running, we will release the Elastic IP from the current instance
and assign it to the new instance. From the AWS EC2 console, select Elastic IPs
under NETWORK & SECURITY. From this new frame, select the Elastic IP that we
configured earlier and select Disassociate Address. Next select Yes, Disassociate
when prompted.

Now that it is no longer associated with any instances, we will associate it with the
new instance that we created from the AMI. With the same Elastic IP still selected,
click Associate Address.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[54]

We are now free to modify the original instance as needed, without worry to the end
user. As they continue to use the Elastic IP, we configured a DNS entry that points to
the Elastic IP and the end user will continue to get a response without any worry of
cache. This is transparent to the user. We will now make modifications to the original
server as shown in the next screenshot:

Now that once the modifications are done, we will swap the Elastic IP back to the
original instance. Select the Elastic IP we configured earlier, and select Disassociate
Address. Select Yes, Disassociate when prompted. Now, choose the original Elastic
IP and click Associate Address. From the Associate Address prompt, find your
instance either by its Instance ID, or by searching its name in the Instance field.
Click on Associate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

If we try to hit the Elastic IP, we will get the information from the server after
modifications were made. Originally it responded with welcome from Apache
2.2.29. We will prove now that it returns the new body from Apache 2.4:

$ curl --silent -v http://54.173.188.206 2>&1 | grep \<\ Server:

< Server: Apache/2.4.10 (Amazon)

$ curl http://54.173.188.206

welcome via httpd 2.4

We successfully used an Elastic IP to swap instances with minimal downtime to
the end user so that completes the floating IP pattern. A useful note to make is that
Elastic IPs are per-account and can be used regardless of availability zone.

While the high availability patterns aim for zero-downtime, it
should be noted that this pattern does introduce a small window
of downtime. The reason this pattern still falls under the category,
however, is because the window of connectivity is much lower
than that of a DNS change, which is a typical solution to server
swapping, without using any external services.

Deep health check pattern
Let's consider an example using the two-tier architecture again. So far we have
shown how to replicate the UI across single and multiple availability zones, through
the multi-server and multi-data center patterns. These patterns used a health check
on the server itself to let the load balancer know that the server is operational. The
thing that is missing from this is a health check that lets the load balancer know that
the database is operational.

The deep health check pattern lets the instances connected to the load balancer, or in
this case the UI instances, notify the load balancer of health checks beyond the grasp
of the load balancer itself. The example that we will discuss will use a page from the
UI instance to return either a 200 OK response or a 500 Internal Server Error if
the database is having issues.

The database in this example has no way of letting the load balancer know whether it
is in a healthy state. The way we will get to this information is to create a route in the
UI instance that tries to connect to the database and returns the response code based
on if it can, or cannot connect.

It is important to note that this does not provide high availability like the other
patterns because there is no way to repair the database in the example, which
we will go through.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[56]

In the real-world, the database would be a master-slave configuration across
availability zones and the UI instances would not report back whether it could,
or could not connect because no action from them or the load balancer would be
required. This is because failover should be built into the clustering configuration
of the database itself.

Some other real-life use-cases would be similar in that deep health checks would be
configured, but would not report them directly to the load balancer. For example,
imagine the system has a service that interacts with a queue. If the response time of
the queue reached a threshold, or the queue reached a great depth, it would report
an alarm. Alarms allow auto scaling groups to scale both up and down, based on the
alarm triggered. That is beyond the reach of this example.

The general workflow for this pattern will be:

•	 Create a load balancer that determines overall health by using the PHP
webpage provided by the EC2 web instance

•	 Create a database instance that contains a very small subset of data
•	 Create an EC2 instance that has a PHP webpage that reports the status code

to a database instance

First, we will configure a load balancer similar to the others with no instances. Make
sure the load balancer has a health check for /dbcheck.php. Once complete, we will
configure a MySQL database server. Launch an instance from the AWS Linux AMI
based on your configuration and SSH into it when it is ready:

[ec2-user@ip-10-203-10-174 ~]$ sudo su -

[root@ip-10-203-10-174 ~]# yum groupinstall -y "MySQL Database" >/dev/
null 2>&1

[root@ip-10-203-10-174 ~]# service mysqld start; chkconfig mysqld on

 [OK]

Starting mysqld: [OK]

[root@ip-10-203-10-174 ~]# /usr/bin/mysqladmin -u root password 'Abc1234'

[root@ip-10-203-10-174 ~]# mysql -uroot -pAbc1234 <<EOF

> create database foo;

> create table blah (

> id INT AUTO_INCREMENT PRIMARY KEY,

> text varchar(20)

>);

> insert into blah set text='wat';

> select * from blah

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

> EOF

+----+------+

| id | text |

+----+------+

| 1 | wat |

+----+------+

[root@ip-10-203-10-174 ~]# mysql -uroot -pAbc1234 <<EOF

> GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'Abc1234';

> FLUSH PRIVILEGES;

> EOF

Next we will configure a UI instance that uses PHP5 and has a route /dbcheck
that returns a response code based on whether it could, or could not connect to the
database. Launch a new instance from the AWS Linux AMI and SSH into it when it
is ready.

Please note that the code is not usable as it is, and might require
modifications to sections in bold.

[ec2-user@ip-10-203-10-154 ~]$ sudo su -
[root@ip-10-203-10-154 ~]# yum groupinstall -y "Web Server" "PHP
Support" >/dev/null 2>&1
[root@ip-10-203-10-154 ~]# yum install -y php php-mysql >/dev/null
2>&1
[root@ip-10-203-10-154 ~]# service httpd start; chkconfig httpd on
 Starting httpd: httpd: apr_sockaddr_info_get() failed for ip-10-203-
10-154
httpd: Could not reliably determine the server's fully qualified
domain name, using 127.0.0.1 for ServerName
 [OK]
[root@ip-10-203-10-154 ~]# groupadd www; usermod -a -G www ec2-user;
chown -R root:www /var/www
[root@ip-10-203-10-154 ~]# chmod 2775 /var/www
[root@ip-10-203-10-154 ~]# find /var/www -type d -exec sudo chmod 2775
{} +; find /var/www -type f -exec sudo chmod 0664 {} +
[root@ip-10-203-10-154 ~]# su ec2-user -c 'echo "<?php phpinfo(); ?>"
> /var/www/html/phpinfo.php'
[root@ip-10-203-10-154 ~]# cat <<EOF >/var/www/html/dbcheck.php
 <?php
\$servername = "DB_INSTANCE_ID";

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[58]

\$username = "root";
\$password = "Abc1234";

// Create connection
\$conn = new mysqli(\$servername, \$username, \$password);

// Check connection
if (\$conn->connect_error) {
 header('HTTP/1.1 500 Internal Server Error');
 die("Connection failed: " . \$conn->connect_error);
}
echo "Connected successfully";
?>
EOF
[root@ip-10-203-10-154 ~]# curl --silent -sL -w "%{http_code}\\n"
"http://localhost/dbcheck.php" -o /dev/null
200

From the AWS EC2 console, select Load Balancers under NETWORK & SECURITY.
Select the load balancer you created in the list and select the Instances tab to see the
status of the instances that are assigned to the load balancer. Click Edit Instances,
and add the EC2 instance that hosts the PHP web application. Now click Save. Once
the Status shows InService as shown in the following screenshot, we are ready to
move on.

Please note that you may have to periodically refresh the page
manually, to see a change in Status.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

What this means is that our deep health check is working successfully. The load
balancer is consistently getting a valid response from the pass-through URI, from
the UI instance via the dbcheck.php page provided. To verify whether this is
working as expected, we should break it. SSH back into the DB instance and stop
the database service.

Back to the load balancer in just a moment or two, the service should change to
OutOfService since the database is no longer connectable.

This concludes the deep health check pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for High Availability

[60]

Summary
In this chapter, we discussed a topic that helps to reduce downtime during planned
operational windows, such as the Elastic IP pattern. We also discussed a few
patterns that help to make resilient server architectures, such as the multi-server
pattern, which helps to maintain servers over general failures and traffic spikes, as
well as the multi-data center pattern, which helps to create more resilient tiers that
can withstand availability zone outages. The last pattern that we discussed is the
deep health pattern, which aims to change the thought process on how to handle
architectures where servers cannot be reached from the load balancers themselves.

In the upcoming chapter we will discuss patterns to process static data.

www.it-ebooks.info

http://www.it-ebooks.info/

[61]

Patterns for Processing
Static Data

A common topic that everyone in technology comes across is static data. Static data
is just that: data that doesn't change. Some examples of static data would be HTML
web pages with CSS and JavaScript, XML, binary files, and so on. When it comes to
this type of data, the common issue that arises out of operations or development is
what to do with it to get it to the end user.

Since this book is aimed at Cloud infrastructure and has been heavily tied to web
applications, it might be obvious that the static data we will use throughout the
examples will be binary data and static HTML. Let's suppose you have some static
web pages such as documentation that needs to be accessible to an end user. We
could easily just create a virtual machine to host it using Nginx or Apache but we
are stuck again with having to solve redundancy, fail over, and high availability.

Instead of creating a virtual machine, load balancers, backup policies, and causing
more headaches, what if we could leverage the services provided by AWS, which
give us all of the benefits of high availability and resiliency out of the box? The topics
covered in this chapter will give a few different approaches to doing just this.

Some of the patterns that we will cover in this chapter are as follows:

•	 High availability storage pattern
•	 Direct storage hosting pattern
•	 Private data delivery pattern
•	 Content delivery networks pattern
•	 Rename distribution pattern

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[62]

High availability storage
Let's suppose we have a site, dynamic or static, that serves large files such as video
files. The best approach to handling this situation would be to host the web server,
as any web application with the HTTP server serving the HTML content directly
will not have the large files on the server itself.

With this method, we could use any deployment method for getting the code from
source control into the server and not have to worry about maintaining the other
files. Failover on the instance can be taken care of as it would for any instance,
through load balancers and auto scaling groups. Redundancy of the files outside
of source control might be controlled through an AWS-provided service such as S3.
Remember that with S3, redundancy, encryption, and failover are taken care of with
no intervention or set up required.

As a bit of coverage, let's discuss S3 a bit more in detail. AWS' Simple Storage
Service provides an unlimited amount of object storage. The root storage node for
S3 is called a bucket, which has a unique identifier, and can have very specific access
and control policies attached to it through IAM roles and bucket policies. Buckets can
also be served directly as a static website through the console.

Security policies will not be discussed in detail in this book. Further
reading can be found in the AWS developer documentation at http://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-
for-amazon-ec2.html and http://docs.aws.amazon.com/
AmazonS3/latest/dev/example-bucket-policies.html.

Let's see what this would actually look like. The general workflow for this pattern
will be as follows:

•	 Create a file and archive it into a zip folder on your local machine
•	 Upload the zipped file to a unique bucket in S3
•	 Create a bucket policy that allows internet users to access and download our

zipped file via a web link through S3 website hosting
•	 Create an instance that uses an Apache web server to host a link to our

zipped file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

We start by creating a local ZIP archive file on your computer named
importantstuff.zip. Next, browse to the S3 section of the AWS console so that we
can create a bucket with a unique name. It is important to note that the bucket name
must be unique globally, and not just to the user account. From the S3 main console
page select Create Bucket.

From the Create a Bucket pop-up, provide the unique name for the Bucket Name
and select a Region that makes sense for your environment. Then click Create.
When selecting the region there is no correct choice, but it should be chosen to be
geographically close to the end users. Since I am from the US, in this pattern, I select
the US Standard region.

While not the correct answer, the typical solution to creating unique
and readable S3 bucket names is to use the Java packaging standard
found on their documentation page at http://docs.oracle.
com/javase/tutorial/java/package/namingpkgs.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[64]

When the prompt closes, you will be left with the properties for the bucket on the
right half of the AWS console. Expand the Static Website Hosting drop-down and
select the Enable website hosting radio button. Provide index.html for the Index
Document text field and error.html for the Error Document text field as seen in the
next screenshot:

Now browse into the bucket we created by selecting it from the S3 console. Click the
Upload button and drag the ZIP file, which we created in the beginning, here. Once
it is prepared and listed in the upload list, select Start Upload.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

The ZIP archive will now upload and become available via S3 to anyone authorized
to retrieve it. It is important to note that we have not modified permissions of the
bucket at all, so if you try to retrieve this file from a web browser using the URL
given by S3, you will get a 403 Forbidden error code.

As stated earlier, we will not cover permissions for S3 in detail, but out of the box an
S3 bucket only has permissions for the root account owner. If we wished to provide
access to this bucket to certain users, profiles, groups, services, or accounts, we would
configure IAM profiles for this bucket. For this example, we will open up this bucket
via HTTP to anyone on the internet, and we will use a bucket policy to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[66]

Back in the S3 console select the magnifying glass icon next to the bucket, to bring
back the configuration properties for the bucket to the right of the console.

Expand the Permission drop-down, and select the Add Bucket Policy icon.

You will use a policy similar to the following one but note that it references the
bucket name that will be unique to the reader:

{

 "Version":"2012-10-17",

 "Statement":[{

 "Sid":"PublicReadGetObject",

 "Effect":"Allow",

 "Principal": "*",

 "Action":["s3:GetObject"],

 "Resource":["arn:aws:s3:::a6408e3f-bc3b-4dab-9749-3cb5aa449bf6/*"

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

 }

]

}

Note that within the policy, we use the unique Amazon Resource Name (ARN) for
our bucket. If the bucket you create has a different name, you would need to modify
the previous policy to reflect it.

Click Save followed by Close to verify and apply the policy to the bucket. If this
was successful in trying to retrieve the ZIP archive that failed earlier with a 403
error code, the file will be downloaded now.

We will now create a virtual machine that hosts static HTML with a link to S3 for
the ZIP file so that this non-site data is not on the machine. From the EC2 portion
of the AWS console, launch an instance from the AWS Linux AMI based on your
configuration, and SSH into it when it is ready.

Note that the pieces in bold might require modifications to work with your setup:

[ec2-user@ip-10-203-10-139 ~]$ sudo su -

[root@ip-10-203-10-139 ~]# yum install –y httpd >/dev/null 2>&1

[root@ip-10-203-10-139 ~]# cat <<EOF > /var/www/html/index.html

<HTML>

 <HEAD><TITLE>Wat</TITLE></HEAD>

 <BODY>

 <H1>Hello World</H1>

 <A HREF="http://a6408e3f-bc3b-4dab-9749-3cb5aa449bf6.s3-website-us-
east-1.amazonaws.com/importantstuff.zip">my super important ZIP file

 </BODY>

</HTML>

EOF

[root@ip-10-203-10-139 ~]# service httpd start

Starting httpd: httpd: apr_sockaddr_info_get() failed for ip-10-203-10-
139

httpd: Could not reliably determine the server's fully qualified domain
name, using 127.0.0.1 for ServerName

 [OK]

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[68]

What we have done at this point now is configured a web server via HTTP that will
host a link to a file in S3. We could use the previous patterns to make this web server
instance resilient by using auto scaling groups, scaling policies, and load balancers,
and not worry about the state of the ZIP archive, or any data that is not relevant
to the web server itself, for that matter. If you browse to the web instance virtual
machine we just created and click the link, you will download the file from S3.

Direct storage hosting
The example for the previous pattern was a hybrid of AWS services that used a
virtual machine for the web application layer, and the highly available S3 storage
for non-application static data. You most likely noticed a very large improvement
that could have been made, that is, of not using a virtual machine to host the static
application content, and instead use S3 throughout.

In the direct storage hosting pattern, this will be the case where we will not have
a virtual machine at all, but will host the entire web application through S3. It is
important to note that this pattern is only useful for static website content. S3 does
not have an execution layer, so it does not allow server-side languages such as PHP.
Another point to note is that although JavaScript can be executed in this pattern, as
it is client-side JavaScript, any asynchronous calls that are made to retrieve data will
likely not have the same DNS entry. If that is the case, you might be able to utilize
JSONP to allow cross-domain data access.

JSONP is a very detailed subject by itself and will thus not be covered
in this book. More information about this concept and safe usage can
be found at http://json-p.org/.

For this pattern, browse to the S3 console and create a bucket, the bucket policy,
and website sharing configuration for that bucket similar to the preceding high
availability storage pattern.

You could also use the same bucket created in the previous example
and add the HTML files in it to skip the creation of a new bucket.

In this example, however, do not upload a single ZIP archive, but a full HTML suite.
An example might be to create an index.html file that contains the following code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

 <title>Hello World</title>
 <!-- CSS for presentation. -->
 <style>
 h1 { font-size: 14px; color: hotpink; }
 button { color: red; }
 </style>
</head>
<body>
 <h1>Hello World</h1>
 <button>Click Me!</button>
 <!-- JavaScript for interactivity. -->
 <script>
 // Get a handle on the first button element in the document.
 var button = document.querySelector("button");
 // If a user clicks on it, say hello!
 button.addEventListener("click", function(ev) {
 alert("Hello");
 }, false);

 </script>
</body>
</html>

Next, browse to our bucket via a web browser and click the button to verify
our pattern.

The previous code is a good example of using an HTML page with pure client-side
JavaScript to show what capabilities remain by using S3 as a web hosting platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[70]

Private data delivery
At this point in the chapter, we have covered two ways of delivering static content.
The first was a pattern that lets us deploy a sort of hybrid service in which some files
remain on S3, while the bulk of the application would reside on the server itself. In
the second pattern, we discussed removing the hybrid portion and hosting all of this
from within S3 without the need for a server.

While these previous examples solve a very simple problem, they might not solve a
real-world issue such as securing data that does not reside on the server itself, similar
to the hybrid high availability pattern. We should try to solve a real-world issue
with a real code-based solution. Let's imagine that we have some large files in an S3
bucket that should not be publicly accessible by default.

Instead of just serving out the content to any connection, we should secure these
files somehow. One approach might be to use policies on the bucket itself, but that
requires maintaining a policy and knowledge of the files. In the private data delivery
pattern, we will lock down the files with a time-sensitive URL that is native to the S3
API. We will implement a very simple login page through PHP and, if authorized, a
URL will be generated to our file so that it can be reached.

First start an instance based on the AWS Linux AMI as per your environment
configuration. Once it is running, SSH into it. Next, install Apache, as well as
PHP and set permissions accordingly:

[ec2-user@ip-10-203-10-123 ~]$ sudo yum groupinstall -y "Web Server" "PHP
Support" >/dev/null 2>&1

[ec2-user@ip-10-203-10-123 ~]$ sudo chown -R ec2-user /var/www && sudo
chmod 2775 /var/www

[ec2-user@ip-10-203-10-123 ~]$ sudo su ec2-user -

[ec2-user@ip-10-203-10-123 ~]$ find /var/www -type d -exec sudo chmod
2775 {} + && find /var/www -type f -exec sudo chmod 0664 {} +

[ec2-user@ip-10-203-10-123 ~]$ sudo service httpd start >/dev/null 2>&1

What we have now is a valid PHP server, so let's create an index.php login page and
a register.php page that handles hardcoded authorization, and generates a URL
upon valid authorization:

[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/index.php
<?xml version="1.0" encoding="UTF-8"?>
<html>
 <head>
 <title>login</title>
 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

 <body>
 <div class="register-form">
 <h1>Login</h1>
 <form action="register.php" method="POST">
 <p>
 <label>User Name : </label>
 <input id="username" type="text"
 name="username" placeholder="username" />
 </p>
 <p>
 <label>Password : </label>
 <input id="password" type="password"
 name="password" placeholder="password" />
 </p>
 Signup
 <input class="btn register" type="submit"
 name="submit" value="Login" />
 </form>
 </div>
 </body>
</html>
EOF
[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/register.php
 <?php //Start the Session
 function el_crypto_hmacSHA1(\$key, \$data, \$blocksize = 64) {
 if (strlen(\$key) > \$blocksize) \$key = pack('H*',
sha1(\$key));
 \$key = str_pad(\$key, \$blocksize, chr(0x00));
 \$ipad = str_repeat(chr(0x36), \$blocksize);
 \$opad = str_repeat(chr(0x5c), \$blocksize);
 \$hmac = pack('H*', sha1(
 (\$key ^ \$opad) . pack('H*', sha1(
 (\$key ^ \$ipad) . \$data
))
));
 return base64_encode(\$hmac);
 }

 function el_s3_getTemporaryLink(\$accessKey, \$secretKey,
 \$bucket, \$path, \$expires = 5) {
 \$expires = time() + intval(floatval(\$expires) * 60);
 \$path = str_replace('%2F', '/',
 rawurlencode(\$path = ltrim(\$path, '/')));
 \$signpath = '/'. \$bucket .'/'. \$path;

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[72]

 \$signsz = implode("\n", \$pieces = array('GET', null, null,
 \$expires, \$signpath));
 \$signature = el_crypto_hmacSHA1(\$secretKey, \$signsz);
 \$url = sprintf('http://%s.s3.amazonaws.com/%s', \$bucket,
\$path);
 \$qs = http_build_query(\$pieces = array(
 'AWSAccessKeyId' => \$accessKey,
 'Expires' => \$expires,
 'Signature' => \$signature,
));
 return \$url.'?'.\$qs;
 }

 if (\$_POST['username'] == "admin" && \$_POST['password'] ==
"legit") {
 echo el_s3_getTemporaryLink('MY_ACCESS_KEY', 'MY_SECRET_KEY',
 'a6408e3f-bc3b-4dab-9749-3cb5aa449bf6',
 'importantstuff.zip');
 } else {
 header('Location: index.php');
 }
 ?>
EOF

The previous code requires a valid, environment-specific access
key and secret key, as well as the S3 bucket name and filename for
the ZIP archive.

What we have at this point, if you were to browse to the instance, is a web page that
allows you to type in a username and password combination. Through that HTML
form, it will pass the parameters to a validation page that looks for a hardcoded
value, which if valid, will produce an S3 URL for our importantstuff.zip file with
a time limit of five minutes. This means that any attempt at using the URL after the
timeout will produce an HTTP 403 Unauthorized error code. The following code
shows what that might look like.

Note that the IP address of the instance would need to be modified
to the IP address of your instance.

[ec2-user@ip-10-203-10-123 ~]$ TEMP_URL=$(curl --silent -X POST -d
"username=admin&password=legit" http://10.203.10.123/register.php)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

[ec2-user@ip-10-203-10-123 ~]$ curl -sL -w "%{http_code}\\n" $TEMP_URL

200

[ec2-user@ip-10-203-10-123 ~]$ sleep 301 && curl -sL -w "%{http_code}\\n"
$TEMP_URL

403

Content delivery networks
An issue that constantly arises with most operations teams is improving the
user experience. There is no set-in-stone solution for this kind of optimization
as it changes, based on countless variables. This book is mostly aimed at web
applications, so one of the optimizations we could make in terms of static data could
be by ensuring that this data does not have to travel very far to reach the end user.
This, in turn, reduces latency to the user or the client system.

Content delivery networks aim to solve this very problem by ensuring that the
data gets delivered to the user from a highly available server that is geographically
nearest to them, or based on latency. AWS has a service called CloudFront, which
aims to solve this very problem.

With CloudFront, an operations team could deploy servers on top of static content so
that it is automatically cached and available to the end user in the best way possible,
with very little work required to do so. In this example, we will serve out some static
HTML content from an S3 bucket, launch a CloudFront distribution on top of that
bucket, and then see what the latency looks like at two different locations in the world.

The first thing we should do is create an S3 bucket as in the previous examples.
Again, we could reuse the buckets from the previous examples, if preferred. Once
the bucket exists, ensure that it is serviced via HTTP using the Static Website Hosting
service for the S3 bucket. Lastly, ensure that a bucket policy exists so that the content
can be reached. See the attached code for an example of an HTML project. Once
the S3 bucket contains the attached code, and can service it via a web browser, let's
proceed by deploying a CloudFront edge server on this bucket.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[74]

From the AWS console, select CloudFront from the available services. From the
CloudFront portion of the console, select Create Distribution from the available
buttons.

From the Select delivery method frame, select Get Started under the Web option.

From the Create distribution frame, we can leave all defaults set except for Origin
Domain Name, which should be set to the S3 bucket that we created and uploaded
the static HTML into.

It should be noted that the Origin Domain Name automatically
lists and auto-completes with compatible bucket names (those that
allow website hosting).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

The last setting that should be set is the Default Root Object in the Distribution
Settings section, which should be index.html.

Finally, scroll to the bottom of this pane and select Create Distribution to finish the
CloudFront edge server setup. This will take us back to the CloudFront distribution
portion of the AWS CloudFront console. From here, the state of the server will stay
as In Progress until the changes take effect across the servers around the world.

It should be noted that this process can take up to 30 minutes to
complete and might require manual refreshing to see a change in
status.

Once the status changes to Deployed, we can now browse to it in a web browser by
using the URL provided in the Domain Name column of the CloudFront console, to
verify that things are working as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Static Data

[76]

Rename distribution pattern
The previous design pattern is a good example of distributing data across many
servers through the CloudFront service. Static content is cached and serviced in an
optimized manner so that the end user can have the best experience in retrieving
pages and content. Underneath the covers, CloudFront caches the URL as a key so
that if the URL is accessed again, it can be served immediately, or near-immediately.

Although static data is just that: static, it does not mean that it does not change. If the
maintainer of the page decides to update any of the content, end users would still get
the old data until the new changes have migrated across all edge servers. If there was
a need to show new data without the worry of users seeing different pieces, a new
method must be used.

As described previously, the URL of the pages and content are what is used in the
cache. The best method for getting new data to the user is to lower the cache timeout
in the created CloudFront distribution, as well as generating new URLs. Generating
new URLs can be tricky without services such as URL shortening services such as
http://bit.ly or http://goo.gl.

CloudFront servers with URL shortening, combined with the private data delivery
pattern, is the best solution for delivery of static content with highly available non-
application data.

Combining all of these concepts this way would allow you to generate signed, time
sensitive (and short) URLs for the dynamic portions of the S3 objects (such as zipped
files) while allowing the non-changing portions, such as the HTML content, to be
cached. This allows for a robust end user experience, as well as a very resilient setup
for the team managing the web application.

Assuming that the web application systems configured for the generation of signed
URLs for S3 bucket data are configured across availability zones with a load balancer
and auto scaling group configured for HTTP load, this three-tier configuration would
provide a 100% scalable and redundant solution for static content.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Summary
We covered a few methods of adding redundancy and optimization to static content
in this chapter. The first three methods covered the AWS S3 service as a backend.
The first pattern used S3 with an EC2 configured server to serve static application
data from the server using S3 as a backend for non-application data. The next pattern
covered using the S3 by itself as a web application server. The last of the S3-backed
patterns used the AWS-provided URL generation API to generate time-limited URLs
for S3-backed objects.

The last two patterns covered CloudFormation as a cache system to ensure that data
was migrated to as many redundant servers as possible. The first pattern discussed
the benefits of cache optimization, while the last one discussed how to tie all of these
patterns together in a multi-tier, completely resilient static datastore.

In the next chapter we will shift our focus from static data to dynamic data.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[79]

Patterns for Processing
Dynamic Data

In the previous chapter, we covered a few patterns that allow servers to offload static
data, or data that does not require request-time parsing, to AWS-backed storage.
This allowed us to take advantage of storage that required very little maintenance
operationally and, instead, focus on optimization of delivery through cache, content
delivery networks, and so on.

These previous patterns are very rarely encountered in real-world exercises, as static
data is generally rare itself. Real-world web applications are, by design, dynamic for
the data is not set in stone, but changes over time through usage. From here, many
issues arise from having multiple servers attempting to share data that cannot be
cached easily, or at all.

One of the worst things that could happen from an end user's perspective would be
to visit a web application and get conflicting data each time they change pages, or
even refresh. If the underlying systems cannot properly share the state or data, then
it will become nearly unusable for any user that might try to utilize it.

Throughout this chapter, we will cover some patterns that help to mitigate the issues
of data synchronization over complex systems, as well as attempting to cover how to
scale up and out over data that is not static.

In this chapter we will cover the following topics:

•	 Clone server pattern
•	 NFS sharing pattern
•	 State sharing pattern
•	 URL rewriting pattern
•	 Cache proxy pattern

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[80]

Clone server pattern
A common problem for any system administrator is keeping data persistent across
servers. The approach for keeping data persistent across systems depends on the
type of application, the filesystem used, and many other key factors. For example,
a database would be clustered across multiple instances so that the data could be
shared (or stored in separate blocks) in an optimal way, or so that indexes could be
used properly for data in different locations.

The type of application we will cover in this example should be simple, so we will
investigate how to scale horizontally using a simple HTTP server that allows for file
uploads. In the previously touched scale out pattern, we covered how to create a
server that hosts HTML content via Apache, and how to increase the throughput by
cloning the server behind a load balancer. That example assumed no dynamic data
because if anything were uploaded to the server, it would be lost when scaled down
or not reachable, depending on which instance the load balancer chose for the user
on the request. Each request would offer potentially different data to the end user,
which could be quite frustrating.

The example covered here will expand the functionality by maintaining a master
instance that will never be scaled out, and scaling up new instances that will copy
data from the master instance on a timer to themselves. While this may not be a
real-world example, it does cover some basic maneuvers on how to shift data
between servers in real time.

There are some drawbacks to the example that we will cover. This would not work
for complex systems, or systems with a lot of data since rsync will take a growing
amount of time to complete as the amount of data grows. There is also very little
error checking or validation among many other best-practice issues that should
be avoided in production environments. Also, the example would not work for
database instances where maintaining the files themselves is not enough to make
the application usable. Lastly, in this example, the master instance becomes a single
point of failure, as the data is not resilient against any kind of faults. That is, if the
master instance failed, the slaves would not be able to copy new data to them or
their siblings.

First, launch an instance as per your environment needs, based on the AWS Linux
AMI. Once it is up and running, we will configure it to be an Apache HTTP server
with PHP support, as well as put our base PHP files so that it becomes usable:

[ec2-user@ip-10-203-10-123 ~]$ sudo yum groupinstall -y "Web Server" "PHP
Support" >/dev/null 2>&1

[ec2-user@ip-10-203-10-123 ~]$ sudo usermod -aG apache ec2-user

[ec2-user@ip-10-203-10-123 ~]$ sudo su ec2-user - # refresh groups and
apply new apache group

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

[ec2-user@ip-10-203-10-123 ~]$ sudo chown -R root:apache /var/www && sudo
chmod 2775 /var/www

[ec2-user@ip-10-203-10-123 ~]$ find /var/www -type d -exec sudo chmod
2775 {} + && find /var/www -type f -exec sudo chmod 0664 {} +

[ec2-user@ip-10-203-10-123 ~]$ mkdir /var/www/html/upload && chmod 777 /
var/www/html/upload

[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/index.php

<?xml version="1.0" encoding="UTF-8" ?>

<html>

<head>

 <title>upload</title>

</head>

<body>

 <div class="upload-form">

 <h1>Upload</h1>

 <form action="upload.php" method="post" enctype="multipart/form-
data"> Your Photo:

 <input type="file" name="file" size="25" />

 <input type="submit" name="submit" value="Submit" />

 </form>

 </div>

 <div class="uploads">

 <h1>Files</h1>

 <?php

 if (\$handle = opendir('upload/')) {

 while (false !== (\$entry = readdir(\$handle))) {

 if (\$entry != "." && \$entry != "..") {

 echo "File: \$entry
";

 }

 }

 closedir(\$handle);

 }

 ?></div>

</body>

</html>

EOF

[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/upload.php

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[82]

<?php

 move_uploaded_file(

 \$_FILES["file"]["tmp_name"],

 "upload/" . \$_FILES["file"]["name"]

);

 header('Location: index.php');

?>

EOF

[ec2-user@ip-10-203-10-123 ~]$ sudo service httpd start && sudo chkconfig
httpd on

What we have at this point is a running HTTP instance that will allow us to upload
files into it. We can test that by browsing to the instance, and using the UI as shown
in the following screenshot:

Next click the Submit button.

As you can see in the screenshots, we have uploaded a text document and it became
available immediately. Just as we have done in the previous patterns, create an AMI
from this instance using the AWS console.

It is considered best practice to remove any user or application
data when creating images. In the current example, that would
mean removing the file uploaded through the UI, although it is not
necessary to do so to continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

While the image is being created, we will create a load balancer for our application.
Do so from the Load Balancers option under NETWORK & SECURITY in the AWS
console. Follow the prompts as per your environment configuration and personal
needs, making sure to add your instance in the Add EC2 Instances tab. Also ensure
that the Ping Path in the Configure Health Check contains our index.php as seen in
the following screenshot:

Once the image creation is complete, we will create a launch configuration for the
AMI. Do so as described in the previous patterns with whatever configuration is
required for your environment and personal preference but we will modify the
user data heavily. For our current example, we will use rsync from the instances
configured through the launch configuration in order to sync the data from the
master instance to the slaves. To do this, a few things should be noted.

First, the slaves must use the proper SSH configuration to reach the master as that is
the protocol that rsync uses. Next, we must ensure that a cron job exists to actually
copy the data from the master to the local slave instance. Cron, without special
configuration, is minute-based at the smallest iteration so that brings us to an edge
case: the data will not be immediately available after being uploaded to the slaves.
Lastly, we will use a virtual host proxy configuration in Apache so that the user
experience does not suffer through our example.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[84]

If the user were to hit our load balancer without this configuration and refresh
a few times, they might see different data each time as there is a delay between
synchronization from the master to the local instance. To get around this, we
will proxy their request so that the data always uploads to the master, and then
synchronizes locally.

To set up this configuration, ensure that the user data, configured in the advanced
portion of the Configure details tab for launch configuration creation, resembles the
bash script as follows:

Note that some of this will need to be modified
according to your data.

#!/bin/bash

[[! -d /home/ec2-user/.ssh]] && (mkdir /home/ec2-user/.ssh && chmod 644
/home/ec2-user/.ssh)

echo $'Host *\nStrictHostKeyChecking no\nHost 10.203.10.79\nIdentityFile
~/.ssh/cdr-pcs.pem' > /home/ec2-user/.ssh/config

chmod 644 /home/ec2-user/.ssh/config

cat <<EOF >/home/ec2-user/.ssh/cdr-pcs.pem

-----BEGIN RSA PRIVATE KEY-----

...your ssh key contents here....

-----END RSA PRIVATE KEY-----

EOF

chmod 400 /home/ec2-user/.ssh/cdr-pcs.pem

chown ec2-user:ec2-user /home/ec2-user -R

echo $'* * * * * ec2-user rsync -avz 10.203.10.79:/var/www/html/upload/ /
var/www/html/upload/' >> /etc/crontab

echo $'<VirtualHost *:80>\n\tServerName *\n\tProxyPass\t/
http://10.203.10.79/\n\tProxyPassReverse / http://10.203.10.79/\n</
VirtualHost>' >> /etc/httpd/conf.d/php.conf

service httpd restart

Once the launch configuration is completed, create an auto scaling group that
references the launch configuration, and receives traffic from the load balancer
that we configured as well. The remaining configuration for the auto scaling group
can be decided based on your preference, but ensure that it is set to create at least
one instance. When the group has been created, it will spawn a new instance into
the load balancer. When all instances are shown as InService in the load balancer,
browse to it in your web browser of choice, and upload some files. Once done, SSH
into your slave instance and verify that it can, and has synced data from the master
to itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

marc-win8:~ $ ssh -i ~/.ssh/cdr-pcs.pem ec2-user@10.203.10.198

The authenticity of host '10.203.10.198 (10.203.10.198)' can't be
established.

ECDSA key fingerprint is 87:33:33:00:c8:ce:9b:ae:b5:22:cd:be:cb:57:cb:84.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.203.10.198' (ECDSA) to the list of known
hosts.

Last login: Fri Dec 19 23:11:17 2014

 __| __|_)

 _| (/ Amazon Linux AMI

 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2014.09-release-notes/

18 package(s) needed for security, out of 42 available

Run "sudo yum update" to apply all updates.

[ec2-user@ip-10-203-10-198 ~]$ ls /var/www/html/upload

[ec2-user@ip-10-203-10-198 ~]$ sleep 60

[ec2-user@ip-10-203-10-198 ~]$ ls /var/www/html/upload

asdf1.txt asdf2.txt asdf.txt

As we can see, through our commands we were able to upload data to the master
and sync it across to our slave instance. This very crude example is a successful
demonstration on how to move non-static data from instance to instance with
very little frustration to the end user (hopefully).

NFS sharing pattern
While the previous example is a very crude demonstration of replicating data across
thin data servers there are, no doubt, many places that could use improvement.
While it did solve the problem of maintaining data across a cluster, it did not do so in
real time. For the end user the problem is solved, but it does not do much to solve the
overall complexity of the system.

The Network File Sharing (NFS) pattern aims to add real filesystem-level replication
to the web application cluster by centralizing the mount point for the data. We will
improve upon the original example by utilizing an underlying virtual machine
whose sole purpose is to host an NFS share for the instances that are accessible
through the load balancer. This provides a bit of performance increase as the
underlying filesystem can be improved with little or no change to the instances
that only read and write.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[86]

Again, as with all solutions, there are some benefits and concerns to be aware of.
While this does simplify the access control quite a bit, it does still create a single
point of failure on the NFS host itself. Unless the filesystem is replicated or clustered,
if it were to experience issues, the instances accessing it would reveal the issue to the
end user. To resolve this, one might abandon NFS for a distributed filesystem, such
as HDFS, or GlusterFS.

More information on GlusterFS can be found at http://www.
gluster.org/, and information on HDFS can be found at http://
hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/HdfsUserGuide.html.

To demonstrate this, we will first create an NFS host. Create a virtual machine, as
you have done earlier, from an AWS Linux AMI, and SSH into it once it is ready:

[ec2-user@ip-10-203-10-161 ~]$ sudo yum install -y nfs-utils nfs-utils-
lib >/dev/null 2>&1

[ec2-user@ip-10-203-10-161 ~]$ sudo mkdir /opt/shared && echo $'/opt/
shared 0.0.0.0/0.0.0.0(rw,sync,no_root_squash,no_subtree_check)' | sudo
tee -a /etc/exports

/opt/shared 0.0.0.0/0.0.0.0(rw)

[ec2-user@ip-10-203-10-161 ~]$ for i in rpcbind nfs nfslock; do sudo
service $i start; done

Starting rpcbind: [OK]

Starting NFS services: [OK]

Starting NFS mountd: [OK]

Starting NFS daemon: [OK]

Starting RPC idmapd: [OK]

[ec2-user@ip-10-203-10-161 ~]$ sudo exportfs –a

This will create an instance that allows NFS mounting from anywhere, so be wary
of your security groups and access protocols. Next, launch another instance as per
your environment, based on the AWS Linux AMI. Once it is up and running, we will
configure it to be an Apache HTTP server with PHP support, as well as push our
base PHP files so that it becomes usable:

[ec2-user@ip-10-203-10-123 ~]$ sudo yum groupinstall -y "Web Server" "PHP
Support" >/dev/null 2>&1

[ec2-user@ip-10-203-10-123 ~]$ sudo usermod -aG apache ec2-user

[ec2-user@ip-10-203-10-123 ~]$ sudo su ec2-user -

[ec2-user@ip-10-203-10-123 ~]$ sudo chown -R root:apache /var/www && sudo
chmod 2775 /var/www

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

[ec2-user@ip-10-203-10-123 ~]$ find /var/www -type d -exec sudo chmod
2775 {} + && find /var/www -type f -exec sudo chmod 0664 {} +

[ec2-user@ip-10-203-10-123 ~]$ mkdir /var/www/html/upload

[ec2-user@ip-10-203-10-123 ~]$ echo $'10.203.10.161:/opt/shared /var/www/
html/upload nfs4 rw 0 0' | sudo tee –a /etc/fstab

[ec2-user@ip-10-203-10-123 ~]$ mount /var/www/html/upload && chmod 777 /
var/www/html/upload

[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/index.php

<?xml version="1.0" encoding="UTF-8" ?>

<html>

<head>

 <title>upload</title>

</head>

<body>

 <div class="upload-form">

 <h1>Upload</h1>

 <form action="upload.php" method="post" enctype="multipart/form-
data"> Your Photo:

 <input type="file" name="file" size="25" />

 <input type="submit" name="submit" value="Submit" />

 </form>

 </div>

 <div class="uploads">

 <h1>Files</h1>

 <?php

 if (\$handle = opendir('upload/')) {

 while (false !== (\$entry = readdir(\$handle))) {

 if (\$entry != "." && \$entry != "..") {

 echo "File: \$entry
";

 }

 }

 closedir(\$handle);

 }

 ?></div>

</body>

</html>

EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[88]

[ec2-user@ip-10-203-10-123 ~]$ cat <<EOF >/var/www/html/upload.php

<?php

 move_uploaded_file(

 \$_FILES["file"]["tmp_name"],

 "upload/" . \$_FILES["file"]["name"]

);

 header('Location: index.php');

?>

EOF

[ec2-user@ip-10-203-10-123 ~]$ sudo service httpd start

What we have at this point is a running HTTP instance that will allow us to upload
files into it. We can test that by browsing to the instance and using the UI as seen in
the following:

Next, click Submit.

As you can see in the preceding screenshots, we have uploaded a text document
and it became available immediately. Just as we have done in the previous patterns,
create an AMI from this instance using the AWS console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

While the image is being created, we will create a load balancer for our application.
Do so from the Load Balancers option under NETWORK & SECURITY in the AWS
console. Follow the prompts as per your environment configuration and personal
needs, making sure to add your instance at the Add EC2 Instances tab. Also ensure
that the Ping Path in the Configure Health Check contains our index.php, as seen
in the following screenshot:

Once the image creation is complete, we will create a launch configuration for the
AMI. Do so as described in the previous patterns with whatever configuration that is
required for your environment and personal preference, but we will modify the user
data slightly. To set up this configuration, ensure that the user data configured in
the advanced portion of the Configure details tab for launch configuration creation,
resembles the bash as follows:

#!/bin/bash

chmod 777 /var/www/html/upload

service httpd start

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[90]

A very noticeable difference between this pattern and the previous one is the large
truncation of the user data. Once the launch configuration is completed, create an
auto scaling group that references the launch configuration, and receives traffic
from the load balancer that we configured. The remaining configuration for the
auto scaling group can be decided based on your preference, but ensure it is set to
create at least one instance. When the group has been created, it will spawn a new
instance into the load balancer. When all instances are shown as InService in the
load balancer, browse to it in your web browser of choice, and upload some files. We
can verify the persistence of the data replication more easily by refreshing the load
balancer in our web browser and uploading multiple files. Each time you upload
and refresh the page, the data stays persistent with no proxying required.

State sharing pattern
The previous patterns have aimed at dynamic content handling in the form of
uploaded content. But it is obvious to most system administrators that this is not
the only form of dynamic content in a system. Besides being able to upload and
download files themselves, dynamic data can exist in the form of session data or
state information. Imagine for a moment, a very simple server setup that consists
of a web application in the form of a user management page and a database.

One system might compose the database while the other system handles the user
management of the application. To do this, a user must log in with credentials to
manipulate the data that comes in and out of the database server. If the system has
no other components then when the user logs in, this information is retained in
memory. This is not a good practice as memory itself is volatile and restricted in size.
If a lot of users were to log in, or the system had to be rebooted, then the user would
have to log in again.

In a more complex setup, we might put the web application behind a load balancer,
which poses an immediate problem to the current setup: the information stored in
memory. This is resolved with key value stores, such as Redis, MemCached, or the
AWS-provided ElastiCache service. While Redis and MemCached are extremely
good at this, we will use ElastiCache for this example as it is provided by AWS, is the
best among these services, and requires very little from an operational standpoint.
We will create a small scalable login system that uses this server, to demonstrate
the power of a Key Value Store (KVS).

More information on Redis can be found at http://redis.io, while
information on MemCached can be found at http://memcached.org/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

First, browse to the ElastiCache section of the AWS console. Once there, select Redis
as the engine, as it is my personal preference, and select Next.

On the Specify Cluster Details screen, you may leave all defaults, or modify
according to your environment. Be sure to add the required fields, such as
Replication Group Name and Replication Group Description; select Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[92]

At the Configure Advanced Settings tab, you may leave all defaults or modify as per
your environment. Now select Next, and then the Launch Replication Group.

This will create a KVS store that is usable once the creation is complete. Next, let's
demonstrate how to interact with Redis. In the following code, we will use the
rubygem redis to connect to the Redis server, check its status, input a key/value
pair, and finally retrieve the value:

marc-win8:~ $ gem install redis

Fetching: redis-3.2.0.gem (100%)

Successfully installed redis-3.2.0

Parsing documentation for redis-3.2.0

Installing ri documentation for redis-3.2.0

Done installing documentation for redis after 2 seconds

1 gem installed

marc-win8:~ $ irb

irb(main):001:0> require 'redis'

=> true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

irb(main):002:0> r = Redis.new(:host => "10.203.10.160", :port => 6380,
:db => 15)

=> #<Redis client v3.2.0 connected to redis://10.203.10.160:6380/0 (Redis
v2.8.6)>

irb(main):003:0> r.ping

=> "PONG"

irb(main):004:0> r.set('foo','bar')

=> "OK"

irb(main):005:0> r.get('foo')

=> "bar"

What we have done at this point is created a permanent key foo with the value bar.
Since it is from an AWS-provided KVS, we know that the data is persistent and
resilient. Because the data is permanent, we can swap the front-end instances ad-hoc
and know that any data stored into it will not change. What we would do now from
a development standpoint is use this key value store on authentication to store the
session or cookie information that is unique to the user.

From pages that require authorization, we would use their cookie information
provided in the HTTP headers to authorize the action into the page. The benefit to a
state store, such as Redis, or MemCached, is that any key can have a Time To Live
(TTL) set on it during initialization. This means that if the request is made after the
TTL has expired, the value fails the look-up. An example of this would be to set a
one-day TTL when a user logs in so that they must log in daily.

More information on the Redis ruby client can be found at their
GitHub page at https://github.com/redis/redis-rb.

URL rewriting pattern
In the spirit of utilizing previous patterns, as well as AWS-provided services, we
might combine the previous examples, which allow uploading files into an instance,
with S3 instead of using a shared filesystem such as NFS. One problem with the
previous examples is that there exists a single point of failure.

In the clone server pattern, the slaves synchronize files from a non-redundant master
instance. In the NFS sharing pattern, all of the instances use a filesystem provided by
an instance that is non-redundant as well. From an operations standpoint this adds
some theoretical failure points. Instead of pushing the files into these instances, we
could use something like S3.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[94]

We would do this by rewriting requests for files on-the-fly using Apache's filter
module or Nginx's proxy rewrite functionality. For this example, we will assume
an Nginx configuration instead of Apache for ease of demonstration.

The PHP files in this chapter will look similar to those in the previous chapter. In
fact index.php will require no changes. The file upload.php, however, will require
some modification. Instead of writing to the local filesystem (or NFS as displayed in
the previous example), we would write to an S3 bucket. First ensure the S3 bucket
is unique, serves HTML as a static web server as demonstrated in the examples in
Chapter 2, Basic Patterns, and contains a sub-directory upload.

Next, modify the upload.php file to upload to S3 instead of writing into the local
filesystem. The code for that might look similar to the following:

<?php
use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$filepath = '/tmp/' . uniqid();
move_uploaded_file(
 $_FILES["file"]["tmp_name"],
 $filepath
);

$s3 = S3Client::factory();

$result = $s3->putObject(array(
 'Bucket' => $bucket,
 'Key' => $keyname,
 'SourceFile' => $filepath
));
header('Location: index.php');
?>

This will successfully upload the file from a temporary location on the local
system into S3. To actually utilize this, we must rewrite incoming requests with
a 301 redirect into the S3 instance. If we assume that the only thing that the user
has to upload is image data in JPEG format, we would put this into our Nginx
configuration file:

location ~ img\/.+\.jpg\$ {
 return 301 http://31d1f38f-fc88-4899-a382-7a42e9444ec5.s3-website-
us-east-1.amazonaws.com\$uri;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Any HTML that links to an image, such as:

will receive a redirect, and retrieve the object from S3, via HTTP. This allows us to
use S3 as an object store for dynamic data, and builds in a new layer of redundancy
and resiliency to our application. With these tweaks, we no longer need a running
master instance, or a running filesystem instance so we can spin up new worker
instances ad-hoc.

Cache proxy pattern
Let's step back to the original issue of managing a web application that contains
dynamic data. We have covered a few different patterns in this chapter that optimize
the redundancy at the file level, from distributed filesystems, to master-slave
replication, and finally through the S3 offload of uploaded data.

While all of these aim to solve the problem from an operational perspective, we
have not touched heavily on optimization to the end user, which is arguably
the most important factor. Some patterns introduce delay in retrieval, and
discrepancies in the form of data not persisting through subsequent HTTP requests.
The best optimization to the end user, and the easiest to demonstrate, is retrieval
optimization. This could be done through a CDN as we have discussed earlier in
some static data processing patterns, but that does not work well with dynamic data.

The problem with dynamic data and a CDN is delay through replication. CloudFront
takes an arguably long amount of time to replicate outwards so that does not solve
the delay issue for the user. The easiest way to solve this is through caching the
objects themselves. There are quite a few different pieces of software that mitigate
this, such as Varnish and Squid. I will demonstrate a simple Varnish cache server
along with our tried-and-true PHP uploader.

More information on Varnish can be found at https://www.
varnish-cache.org/, and that on Squid can be found at
http://www.squid-cache.org/.

The first instance will be our HTTP server, so let's spin up an EC2 instance based on
the AWS Linux AMI as we have done earlier. Once it is up and running, we will SSH
into it, and configure it as we have done before:

[ec2-user@ip-10-203-10-200 ~]$ sudo yum groupinstall -y "Web Server" "PHP
Support" >/dev/null 2>&1

[ec2-user@ip-10-203-10-200 ~]$ sudo usermod -aG apache ec2-user

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[96]

[ec2-user@ip-10-203-10-200 ~]$ sudo su ec2-user -

[ec2-user@ip-10-203-10-200 ~]$ sudo chown -R root:apache /var/www && sudo
chmod 2775 /var/www

[ec2-user@ip-10-203-10-200 ~]$ find /var/www -type d -exec sudo chmod
2775 {} + && find /var/www -type f -exec sudo chmod 0664 {} +

[ec2-user@ip-10-203-10-200 ~]$ mkdir /var/www/html/upload && chmod 777 /
var/www/html/upload

[ec2-user@ip-10-203-10-200 ~]$ cat <<EOF >/var/www/html/index.php

<?xml version="1.0" encoding="UTF-8" ?>

<html>

<head>

 <title>upload</title>

</head>

<body>

 <div class="upload-form">

 <h1>Upload</h1>

 <form action="upload.php" method="post" enctype="multipart/form-
data"> Your Photo:

 <input type="file" name="file" size="25" />

 <input type="submit" name="submit" value="Submit" />

 </form>

 </div>

 <div class="uploads">

 <h1>Files</h1>

 <?php

 if (\$handle = opendir('upload/')) {

 while (false !== (\$entry = readdir(\$handle))) {

 if (\$entry != "." && \$entry != "..") {

 echo "File: \$entry
";

 }

 }

 closedir(\$handle);

 }

 ?></div>

</body>

</html>

EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

[ec2-user@ip-10-203-10-200 ~]$ cat <<EOF >/var/www/html/upload.php

<?php

 move_uploaded_file(

 \$_FILES["file"]["tmp_name"],

 "upload/" . \$_FILES["file"]["name"]

);

 header('Location: index.php');

?>

EOF

[ec2-user@ip-10-203-10-200 ~]$ sudo service httpd start

Now that the instance is running, we will create a Varnish server that points to this
single instance. Launch another EC2 instance based on the AWS Linux AMI, and
SSH into it once it is available.

Note that some of the following lines may require adjusting
as per your environment specifications.

[ec2-user@ip-10-203-10-187 ~]$ sudo yum install -y http://yum.puppetlabs.
com/puppetlabs-release-el-6.noarch.rpm >/dev/null 2>&1

[ec2-user@ip-10-203-10-187 ~]$ sudo yum install -y puppet >/dev/null 2>&1

[ec2-user@ip-10-203-10-187 ~]$ sudo mkdir /etc/puppet/modules

[ec2-user@ip-10-203-10-187 ~]$ sudo puppet module install maxchk-varnish

dnsdomainname: Unknown host

Preparing to install into /etc/puppet/modules ...

Downloading from http://forge.puppetlabs.com ...

Installing -- do not interrupt ...

/etc/puppet/modules

└── maxchk-varnish (v0.0.6)

[ec2-user@ip-10-203-10-187 ~]$ cat <<EOF >/tmp/setup.pp

class {'varnish':

 varnish_listen_port => 80,

 varnish_storage_size => '1G',

}

class { 'varnish::vcl':

 probes => [

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Processing Dynamic Data

[98]

 { name => 'health_check', url => "/index.php" },

],

 backends => [

 { name => 'server1', host => '10.203.10.220', port => '80', probe =>
'health_check' },

],

 directors => [

 { name => 'cluster', type => 'round-robin', backends => ['server1']
}

],

 selectors => [

 { backend => 'cluster' },

],

}

EOF

[ec2-user@ip-10-203-10-187 ~]$ sudo puppet apply /tmp/setup.pp

dnsdomainname: Unknown host

dnsdomainname: Unknown host

notice: /Stage[main]/Varnish::Install/Package[varnish]/ensure: created

notice: /Stage[main]/Varnish::Vcl/File[varnish-vcl]/content: content
changed '{md5}3c5af7ddff1cfe34b5f6ea7e321c0145' to '{md5}57316613af12efec
cb32f27b64d51900'

notice: /Stage[main]/Varnish::Shmlog/Mount[shmlog-mount]/ensure: defined
'ensure' as 'mounted'

notice: /Stage[main]/Varnish::Shmlog/Mount[shmlog-mount]: Triggered
'refresh' from 1 events

notice: /Stage[main]/Varnish/File[varnish-conf]/ensure: created

notice: /Stage[main]/Varnish::Service/Service[varnish]/ensure: ensure
changed 'stopped' to 'running'

notice: /Stage[main]/Varnish::Service/Service[varnish]: Triggered
'refresh' from 2 events

notice: /Stage[main]/Varnish/File[storage-dir]/ensure: created

notice: Finished catalog run in 7.06 seconds

We now have a running Varnish server that listens to port 6081, and forwards
requests to a cluster of one, or the instance that we created earlier. If you browse to
port 6081 on this instance, you will see the File upload HTTP page as always. You
may upload files at will, but you would notice that subsequent visits and refreshes
stay relatively small in size. As the page grows with uploads, the process will stay
consistent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

It is obvious with this example, as with the others, that there is still room for
improvement. As this example currently stands, we cannot cluster it traditionally as
we have the others, since the load balancer does not know of the lower application
instances, but only of the Varnish server. To solve this problem, we would choose a
service discovery module, such as Consul, instead of using auto scaling Groups and
launch configurations.

Information on Consul service discovery and Varnish can be
seen at the Hashicorp blog at https://hashicorp.com/
blog/introducing-consul-template.html.

Another point to be made is that we have introduced the original issue of the files
not being replicated across servers. If we were to combine this pattern with Consul
service discovery and the steps taken in the previous pattern to store the files within
S3, we would have a complete web application tier. This complete tier still contains a
single point of failure, however, on the Varnish server itself.

If we wished to use turtles all the way down, so-to-speak, we could use S3 or
a distributed filesystem, such as GlusterFS for the cache data on the Varnish
server. Through this we could add as many Varnish servers as needed, and make
them accessible through the load balancer, at which point our application would
have proper caching, load balancing, fail over, cache, and data redundancy and
replication. The system administrator within us most likely favors this tier.

Summary
In this chapter, we covered quite a few patterns to discuss how to handle data that
is dynamic. In the clone server pattern, we demonstrated how to maintain data on
a master instance, and clone it to slave instances. This allowed us to scale out and
not miss any data. Next we moved to the NFS sharing pattern in which we used a
single data store under NFS to hold the data. This allowed us to scale out without
having any point-in-time issues with our data. We then moved to the state sharing
pattern where we demonstrated the use of a key-value store, such as ElastiCache,
and touched on some examples of how to add this into our infrastructure. We then
moved to the URL rewriting pattern in which we demonstrated how we could move
all of our static assets, such as images and JavaScript files, into S3 and rewrite them
from the HTTP server, without any user disruption. Lastly we talked on the cache
proxy pattern in which we optimized the user experience further by caching the
static assets from the previous example.

Next we will move on to patterns for uploading data.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[101]

Patterns for Uploading Data
Most system administrators and developers are very familiar with data being
uploaded to servers. From HTTP servers (with upload forms) to FTP servers, it is
common to come across variations in how to handle the upload as well as the data.
For developers, the issue is where to store the data and how to access the interface.
Common examples would be using REST to proxy the file to another system or
perhaps just writing it into the file system.

From the system administrators' perspective, the questions go a little deeper. If the
files will be stored on the filesystem, how will it be able to scale across multiple
instances? If it is going to interact with another system, are the system administrators
responsible for that instance as well? Were any dependencies introduced, such as
database tables or rows? These questions almost come back full-circle to previous
patterns and issues such as high availability and redundancy.

We have previously touched upon simple file uploads in patterns such as the clone
server pattern, where we added redundancy through a simple master/slave setup,
and the NFS sharing pattern, where we used a shared filesystem to avoid duplicating
data and issues of master failover.

In this chapter, we will be a bit more creative in terms of how to overall handle
the uploads instead of only looking at them from a data redundancy point of view.
We will do this by utilizing S3 storage as much as possible for the data as that
will remove the need for data replication and failover altogether, albeit with
some side effects.

Uploading data through HTML forms into the filesystem is native to most HTTP
servers. However, uploading it into something such as S3, is not. Because of this, we
will introduce a few methods of interacting with S3. You will see how we handle this
barrier using the patterns discussed in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[102]

In this chapter, we will cover the following patterns:

•	 Write proxy pattern
•	 Storage index pattern
•	 Direct object upload pattern

Write proxy pattern
The first method we will discuss for handling uploaded data will be quite different
than any method thus far. Instead of uploading through the HTTP front-end as before,
we will handle the data through a different protocol. It is not often to see a web server
as the only means for sending data into a server. Legacy systems, systems that wish to
support extremely large files, or even systems that need the transfer to be as optimized
as possible would typically not interact via the HTML POST method.

Some examples of protocols used for file uploads that one might typically find, are:

•	 FTP or SFTP
•	 FTPS or SCP
•	 HTTP PUT/POST
•	 UDP optimized transfers such as Tsunami UDP

More information on Tsunami can be found at http://tsunami-
udp.sourceforge.net/.

For this example, we will use FTP as it is a bit easy to demonstrate and requires little
overhead. This pattern allows the end user to anonymously upload the data via FTP
into a proxy server, whose only purpose is to move the uploaded data into S3.

This pattern helps to relieve some side effects from other patterns in which data
was uploaded. The previous patterns, clone server pattern and NFS sharing pattern,
allowed uploads via HTTP POST but had to resolve data synchronization between
machines at scale time as well as redundancy of the data itself. However, if we
use the Amazon-provided S3 service, we get synchronization support and data
redundancy out of the box. This resolves the issue of what happens to the data
if any (or all) of the instances go down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

Another huge benefit to this pattern, which isn't covered in the example, is that
it can be scaled horizontally with very little additional effort. If the FTP server is
cloned and all of these instances are put behind a load balancer, we could upload
to whichever instance was chosen for us to connect to. Since the data is offloaded
into S3, and the web server only cares about what is in the S3 bucket, there is no side
effect to either set of the end users: those using the web server and those uploading
data. The web server could also be cloned and scaled horizontally, since it is using
the S3 API to retrieve and list the objects.

The machine will provide anonymous FTP access with write access to the end user.
Once data is uploaded, the server will synchronize that data to an S3 bucket with
HTTP serving enabled. It will service a web page as it did before but will not allow
uploads through it as we have. Instead, it will simply list the files available within the
S3 bucket and allow the end user to download them through the web server interface.

As with all of our patterns, it is not perfect out of the box by any means and
introduces side effects relative to the problem it is solving. We will not be
configuring the FTP server process to run a command when uploads finish. While it
is possible, it takes quite a bit of added configuration for a multitude of reasons (the
biggest being that the official ProFTPd module to do this does not support chroot
with anonymous access). Instead, we will be using a third-party package, incrond,
which monitors a directory for changes and runs commands on a notify signal.

This example uses AWS Linux, and while at one point in time
this Linux distribution was very closely mirrored to the CentOS
distribution, it has strayed very far away in recent developments. We
will be installing a package built specifically for RedHat architecture
EL6, which is never recommended for the AWS Linux distribution.

Another note to be made about this example is that it can be divided into two
separate systems: one for the web server and one for the FTP server. Next, please
note that as mentioned before, uploads into S3 are not immediately available. Lastly,
if the FTP server for this pattern was scaled horizontally, as described earlier, the
only issue might be data integrity. If multiple users attempted to upload files with
the same filenames in the same location, it would be a race condition for which
version made it into S3. This could be resolved, however, by giving unique filenames
and data locations to each user.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[104]

Let's get started by first creating an S3 bucket. Do as we did before, making sure
to enable website hosting with a bucket policy that allows objects to be retrieved.
Once that is done, launch an instance based on the AWS Linux AMI as per your
environment. Once it is ready, SSH into it and configure it to be an FTP server:

[ec2-user]$ sudo yum install -y gcc gcc-c++ >/dev/null 2>&1

[ec2-user]$ curl -s ftp://ftp.proftpd.org/distrib/source/proftpd-
1.3.5.tar.gz > proftpd-1.3.5.tar.gz

[ec2-user]$ tar zxf proftpd-1.3.5.tar.gz

[ec2-user]$ cd proftpd-1.3.5

[ec2-user]$./configure -sysconfdir=/etc --with-modules=mod_exec >/dev/
null 2>&1

[ec2-user]$ make >/dev/null 2>&1

[ec2-user]$ sudo make install >/dev/null 2>&1

[ec2-user]$ sudo ln -s /usr/local/sbin/proftpd /usr/sbin/proftpd

[ec2-user]$ sudo cp contrib/dist/rpm/proftpd.init.d /etc/init.d/proftpd

[ec2-user]$ sudo chmod +x /etc/init.d/proftpd

[ec2-user]$ sudo cp sample-configurations/anonymous.conf /etc/proftpd.
conf

[ec2-user]$ sudo sed -i.bak 's/nobody\|nogroup/ftp/g' /etc/proftpd.conf

[ec2-user]$ cd ~

[ec2-user]$ export IP=$(curl -s http://169.254.169.254/latest/meta-data/
local-ipv4)

[ec2-user]$ sudo mkdir /var/log/proftpd && sudo chmod 744 /var/log/
proftpd && sudo chown ftp:ftp /var/log/proftpd

[ec2-user]$ echo "DefaultAddress ${IP}"$'\nSocketBindTight\ton\
nServerLog /var/log/proftpd/server.log\nTransferLog /var/log/proftpd/
xfer.log' | sudo tee -a /etc/proftpd.conf >/dev/null

[ec2-user]$ sudo mkdir -p /var/ftp/uploads && sudo chown ftp:ftp /var/ftp
-R && sudo chmod 777 /var/ftp -R

[ec2-user]$ sudo service proftpd start

Starting proftpd: [OK]

[ec2-user]$ sudo yum install -y http://pkgs.repoforge.org/incron/
incron-0.5.9-2.el6.rf.x86_64.rpm >/dev/null 2>&1

[ec2-user]$ echo $'#!/bin/sh\nexport AWS_ACCESS_KEY_ID=myaccesskey\
nexport AWS_SECRET_ACCESS_KEY=mysecretkey\nexport AWS_DEFAULT_REGION=us-
east-1' | sudo tee -a /etc/profile.d/aws.sh >/dev/null

[ec2-user]$ sudo chmod +x /etc/profile.d/aws.sh

[ec2-user]$ sudo touch /usr/local/bin/ftp2s3.sh && sudo chown ftp:ftp /
usr/local/bin/ftp2s3.sh && sudo chmod +x /usr/local/bin/ftp2s3.sh

[ec2-user]$ cat <<EOF | sudo tee -a /usr/local/bin/ftp2s3.sh >/dev/null

> #!/bin/bash

> . /etc/profile.d/aws.sh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

> cd /var/ftp/uploads

> aws s3 sync s3://31d1f38f-fc88-4899-a382-7a42e9444ec5 . >>/var/log/
proftpd/sync.log 2>&1

> aws s3 sync . s3://31d1f38f-fc88-4899-a382-7a42e9444ec5 >>/var/log/
proftpd/sync.log 2>&1

> EOF

[ec2-user]$ echo ftp | sudo tee -a /etc/incron.allow >/dev/null

[ec2-user]$ echo root | sudo tee -a /etc/incron.allow >/dev/null

[ec2-user]$ echo /var/ftp/uploads IN_CREATE /usr/local/bin/ftp2s3.sh |
sudo tee -a /etc/incron.d/proftpd

[ec2-user]$ sudo service incrond start

Starting Filesystem event daemon (incrond): [OK]

We can go ahead at this point and upload a file to it via SFTP, and verify that it
appears in our S3 bucket:
C:\Users\marcus.young\book

$ aws s3 ls s3://31d1f38f-fc88-4899-a382-7a42e9444ec5

C:\Users\marcus.young\book

$ ftp 10.203.10.52

Connected to 10.203.10.52.

220 ProFTPD 1.3.5 Server (ProFTPD Anonymous Server) [10.203.10.52]

User (10.203.10.52:(none)): anonymous

331 Anonymous login ok, send your complete email address as your password

Password:

230 Anonymous access granted, restrictions apply

ftp> CD uploads

250 CWD command successful

ftp> PUT file1

200 PORT command successful

150 Opening ASCII mode data connection for file1

226 Transfer complete

ftp: 7 bytes sent in 0.31Seconds 0.02Kbytes/sec.

ftp> PUT file2

200 PORT command successful

150 Opening ASCII mode data connection for file2

226 Transfer complete

ftp: 7 bytes sent in 0.21Seconds 0.03Kbytes/sec.

ftp> quit

221 Goodbye.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[106]

C:\Users\marcus.young\Downloads\book

$ aws s3 ls s3://31d1f38f-fc88-4899-a382-7a42e9444ec5

2014-12-31 11:28:59 6 file1

2014-12-31 11:28:59 6 file2

At this point, we have a working proxy server. However, we will take it a step
further and add an HTTP front-end to list and retrieve the files from S3. You may
either spin up a new instance identical to the last or use the existing instance.
Whichever choice is made, SSH into it when it is ready:

[ec2-user]$ sudo yum groupinstall -y "Web Server" "PHP Support" >/dev/
null 2>&1

[ec2-user]$ sudo usermod -aG apache ec2-user

[ec2-user]$ sudo su ec2-user -

[ec2-user]$ sudo chown -R root:apache /var/www && sudo chmod 2775 /var/
www

[ec2-user]$ find /var/www -type d -exec sudo chmod 2775 {} + && find /
var/www -type f -exec sudo chmod 0664 {} +

[ec2-user]$ mkdir /var/www/html/upload && chmod 777 /var/www/html/upload

[ec2-user]$ cd /var/www/html

[ec2-user]$ (

> curl -sS https://getcomposer.org/installer | php

> echo '{"require": {"aws/aws-sdk-php": "2.6.*"}}' >composer.json

> php composer.phar install

>) >/dev/null 2>&1

[ec2-user]$ echo $'#!/bin/sh\nexport AWS_ACCESS_KEY_ID=myaccesskey\
nexport AWS_SECRET_ACCESS_KEY=mysecretkey' | sudo tee -a /etc/sysconfig/
httpd >/dev/null

[ec2-user]$ cat <<EOF >/var/www/html/index.php

> <?php

> require 'vendor/autoload.php';

>

> use Aws\S3\S3Client;

> use Aws\S3\Exception\S3Exception;

>

> \$bucket = '31d1f38f-fc88-4899-a382-7a42e9444ec5';

>

> \$client = S3Client::factory(array(

> 'key' => \$_ENV["AWS_ACCESS_KEY_ID"],

> 'secret' => \$_ENV["AWS_SECRET_ACCESS_KEY"],

>));

> ?>

> <?xml version="1.0" encoding="UTF-8" ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

> <html>

> <head>

> <title>upload</title>

> </head>

> <body>

> <div class="upload-form">

> <h1>Upload</h1>

> <div class="uploads">

> <h1>Files</h1>

> <?php

> \$objects = \$client->getIterator('ListObjects', array('Bucket'
=> \$bucket));

>

> foreach (\$objects as \$object) {

> echo "<a href=\"http://" . \$bucket . ".s3-website-us-
east-1.amazonaws.com/" . \$object['Key'] . "\">" . \$object['Key'] . "</
a>
";

> }

> ?>

>

> </div>

> </body>

> </html>

> EOF

[ec2-user]$ sudo service httpd start

Starting httpd: httpd: apr_sockaddr_info_get() failed for ip-10-203-10-52

httpd: Could not reliably determine the server's fully qualified domain
name, using 127.0.0.1 for ServerName

 [OK]

The previous snippet will set up our Apache HTTP server and configure PHP as well
as the AWS API. If we browse to our instance via a web browser, we will be greeted
by a handy list of files that can be retrieved from S3 as a link.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[108]

Storage index pattern
If you are following along with the patterns, you might notice that the previous
pattern is a bit slow to display from the web server. When we iterated over the
objects through the PHP API, there were a lot of calls being made in the background,
such as SSL handshakes, IAM authorization for the calls and objects themselves, and
so on.

We could improve heavily on the previous example by indexing the files that are
to be uploaded. The proxy server that uploads to S3 could cache or store metadata
about the file. This would ensure that the user gets a much quicker response, instead
of waiting for the S3 calls to complete on each refresh of the web server. It should
also be noted that without this improvement, the number of API calls is directly
proportional to the number of end users hitting the web server. Amazon's S3 billing
model is by API usage, so the cost goes up as the number of users and the amount of
usage goes up. Management might be silently thankful for a heavily loaded system
that includes caching.

The way we will improve on the previous system is by creating a database that stores
the information about the file just after it has been written to the S3 bucket. First,
we will launch an RDS instance. Configure it as per your environment by clicking
Launch DB Instance from RDS Dashboard.

From the Select Engine tab, use the default of MySQL and click Select. Select
whatever is appropriate for you in the Production? tab and click Next Step. Make
note of your administration information such as username and password from the
Specify DB Details tab and click Next Step. Finish relevant configuration in the
Configure Advanced Settings tab, and then select Launch DB Instance to complete.
View your instance by selecting View Your DB Instances from the final confirmation
window. Make note of the hostname, named Endpoint, for your instance by selecting
it in the Instances tab of the RDS console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

If the instance or instances from the previous pattern are still running, we will
continue to use them. Otherwise, if you wish to follow along, follow the process from
the previous example to configure a running virtual machine with an FTP server and
a web server. Once it is configured and running, we will gather our first metric to
base our optimization goal upon:

$ time curl -s http://10.203.10.159 >/dev/null

real 0m6.086s

user 0m0.015s

sys 0m0.000s

The previous command shows that a curl to our web server took just over six
seconds to complete using the S3 API! From an end user's perspective, this is most
likely unacceptable. From our running instance, let's first configure MySQL with a
database and a very simple table for metadata storage:

[ec2-user@ip-10-203-10-159 ~]$ sudo yum install -y mysql >/dev/null

[ec2-user@ip-10-203-10-159 ~]$ sudo yum install php-mysql

[ec2-user@ip-10-203-10-159 ~]$ cat <<EOF | mysql -umydbuser -pabc1234\!
-hmydbinstance.cndulnje6en1.us-east-1.rds.amazonaws.com

> create database mys3info;

> use mys3info;create table files (

> id INT AUTO_INCREMENT PRIMARY KEY,

> filename varchar(50),

> location varchar(50)

>);

> EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[110]

In our previous example, we created a script that is run each time a file changes on
the proxy server from FTP uploads. We will reconfigure that script to insert metadata
into the MySQL table after the S3 synchronization completes:

 [ec2-user@ip-10-203-10-159 ~]$ cat <<EOF >/usr/local/bin/ftp2s3.sh

> #!/bin/bash

> . /etc/profile.d/aws.sh

> upload_location="/var/ftp/uploads"

> cd ${upload_location}

> aws s3 sync s3://31d1f38f-fc88-4899-a382-7a42e9444ec5 . >>/var/log/
proftpd/sync.log 2>&1

>

> IFS='\n'; for i in `aws s3 sync . s3://31d1f38f-fc88-4899-a382-
7a42e9444ec5`; do

> #the output gets really dirty here. For the sake of a demo...

> clean=$(echo $i | sed 's/^.\+upload:/upload:/g' | awk '{print $2}' |
grep -E '^\.')

> if [[-n $clean]]; then

> filename=$(basename $clean)

> cat <<EOF | mysql -umydbuser -pabc1234\! -hmydbinstance.
cndulnje6en1.us-east-1.rds.amazonaws.com mys3info

> insert into files(filename, location) values('${filename}',
'${upload_location}');

> EOF

> fi

> done

This script, which should absolutely not be used in a real production system ever,
will insert the filename of the item or items uploaded into the MySQL table. We can
check that by uploading a file via FTP and viewing the rows from the table:

[ec2-user@ip-10-203-10-159 ~]$ mysql -umydbuser -pabc1234\!
-hmydbinstance.cndulnje6en1.us-east-1.rds.amazonaws.com mys3info -e
'select * from files;'

+----+----------+------------------+

| id | filename | location |

+----+----------+------------------+

| 1 | file3 | /var/ftp/uploads |

| 2 | file2 | /var/ftp/uploads |

+----+----------+------------------+

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

For the end user, however, the problem is not solved. When the web page is
requested, the S3 API is still used. Instead, we will use a database query. Let's
modify the PHP page:

 [ec2-user@ip-10-203-10-159 ~]$ cat <<EOF >/var/www/html/index.php

> <?php

> \$bucket = '31d1f38f-fc88-4899-a382-7a42e9444ec5';

> \$conn = mysql_connect('mydbinstance.cndulnje6en1.us-east-1.rds.
amazonaws.com', 'mydbuser', 'abc1234!');

> \$db = mysql_select_db('mys3info');

>

> ?>

> <?xml version="1.0" encoding="UTF-8" ?>

> <html>

> <head>

> <title>upload</title>

> </head>

> <body>

> <div class="uploads">

> <h1>Files</h1>

> <?php

>

> \$sql = "SELECT filename FROM files";

> \$result = mysql_query(\$sql);

>

> while (\$row = mysql_fetch_assoc(\$result)) {

> echo "<a href=\"http://" . \$bucket . ".s3-website-us-east-1.
amazonaws.com/" . \$row['filename'] . "\">" . \$row['filename'] . "</
a>
";

> }

> ?>

>

> </div>

> </body>

> </html>

> EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[112]

We can verify that it works as expected by browsing to our instance via a web browser.

Lastly, we should verify that this is a much quicker response to the end user:

$ time curl -s http://10.203.10.159 >/dev/null

real 0m0.425s

user 0m0.000s

sys 0m0.030s

Direct object upload pattern
In this last pattern, we will try to resolve the original issue in a different way
rather than optimize on the original attempt. The problem we are facing is how to
handle data that needs to be uploaded to a central store. We would like to stay with
Amazon-provided services as much as possible, so what we will attempt to do here
is demonstrate direct upload into S3 from a web server.

In both the write proxy pattern and the storage index pattern, we allowed the user to
upload into S3 using an FTP server as a proxy. S3 itself has a very robust HTTP POST
support and allows S3 access via HTTP methods, even without being configured for
static website access, as we currently have enabled on our bucket.

For this pattern, we will set up a web instance with only the Apache HTTP web
server on it, which contains a form to upload into our bucket. For the form to POST
successfully, however, some steps must be taken to allow proper authorization from
our server itself. We will create a ruby script that creates the proper authorization
pieces our form needs, and configure the HTML form to use these values.

Launch an instance from the AWS Linux AMI and SSH into it when it is ready:

[ec2-user@ip-10-203-10-38 ~]$ sudo yum install -y httpd >/dev/null

[ec2-user@ip-10-203-10-38 ~]$ sudo service httpd start

Starting httpd: httpd: apr_sockaddr_info_get() failed for ip-10-203-10-38

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

httpd: Could not reliably determine the server's fully qualified domain
name, using 127.0.0.1 for ServerName

 [OK]

[ec2-user@ip-10-203-10-38 ~]$ cat <<EOF | sudo tee -a /usr/local/bin/
sign.rb >/dev/null

> require 'base64'

> require 'openssl'

> require 'digest/sha1'

> bucket = ENV['AWS_BUCKET']

> local_ip = %x[curl -s http://169.254.169.254/latest/meta-data/local-
ipv4]

> policy_document = <<-EOS

> {"expiration": "2016-01-01T00:00:00Z",

> "conditions": [

> ["starts-with", "\$key", "uploads/"],

> {"bucket": "#{bucket}"},

> {"acl": "public-read"},

> {"success_action_redirect": "http://#{local_ip}/"},

> ["starts-with", "\$Content-Type", "image/jpeg"]

>]

> }

> EOS

>

> policy = Base64.encode64(policy_document).gsub("\n","")

> aws_secret_key = ENV['AWS_SECRET_KEY']

> signature = Base64.encode64(

> OpenSSL::HMAC.digest(

> OpenSSL::Digest::Digest.new('sha1'),

> aws_secret_key, policy)

>).gsub("\n","")

>

> puts "Local IP: #{local_ip}"

> puts "Base64: #{policy}"

> puts "Signature: #{signature}"

> EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Uploading Data

[114]

The server is now configured as a basic Apache server with our ruby script that will
sign our request. To do this, we must run it with the right environment variables:

[ec2-user@ip-10-203-10-38 ~]$ AWS_SECRET_KEY=mysecret AWS_
BUCKET=31d1f38f-fc88-4899-a382-7a42e9444ec5 ruby /usr/local/bin/sign.rb

Local IP: 10.203.10.38

Base64: alskdjfalsdfj==

Signature: foo=

The previous command has given us the information we need for our HTML form,
which requires the Base64 encoded policy and the signed string for the policy using
our secret key. Use these values for the HTML form making note that the policy as
well as the form include the IP of the instance as part of its authorization criteria:

[ec2-user@ip-10-203-10-38 ~]$ sudo rm -rf /var/www/html/index.html; cat
<<EOF | sudo tee -a /var/www/html/index.html >/dev/null

> <?xml version="1.0" encoding="UTF-8" ?>

> <html>

> <head>

> <title>upload</title>

> </head>

> <body>

> <form action="http://31d1f38f-fc88-4899-a382-7a42e9444ec5.
s3.amazonaws.com/" method="post" enctype="multipart/form-data">

> <input type="hidden" name="key" value="uploads/\${filename}">

> <input type="hidden" name="AWSAccessKeyId" value="myaccesskey">

> <input type="hidden" name="acl" value="public-read">

> <input type="hidden" name="success_action_redirect"
value="http://10.203.10.38/">

> <input type="hidden" name="policy" value="alskdjfalsdfj==">

> <input type="hidden" name="signature" value="foo=">

> <input type="hidden" name="Content-Type" value="image/jpeg">

>

> File to upload to S3:

> <input name="file" type="file">

>

> <input type="submit" value="Upload File to S3">

> </form>

> </body>

> </html>

> EOF

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

If we browse to the instance now, we will be greeted with an upload script. The
form and its policy are configured to only allow images (as configured through
a content-type header check). Upload any JPEG image and when it is complete,
you will be redirected back to your upload script. You can verify the upload was
successful by manually checking your S3 bucket.

Summary
In this chapter, we touched on a few examples demonstrating how to handle data
uploaded from an end user. Combining these patterns with previous and upcoming
patterns will help us come up with robust and inventive solutions with minimal
side effects. In the write proxy pattern, we created an FTP server to handle the
authorization and shifting of the data from the instance into S3, with a web front-end
to allow retrieval later. We then moved to the storage index pattern, which allowed
us to optimize the end users' experience at the web front-end by utilizing a metadata
store, resulting in a much quicker response and addition of some future search
abilities. We then moved to the direct object upload pattern, which removed the need
for any pre-processing of the data and allowed us to upload directly into S3 from an
HTTP server using the S3 POST method.

In the next chapter, we will move to databases and discuss patterns on creating
resilient database and data stores.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[117]

Patterns for Databases
It has been stated throughout this book that it mostly aims towards web applications
in general, and with web applications come databases. There are many shapes
and sizes of databases, from relational to non-relational, and this chapter will
focus on relational databases. Books of all shapes from authors of all backgrounds
have covered databases; so we will try not to beat the dead horse too much in this
chapter, but some of those topics are still relevant when moving into a Cloud-backed
infrastructure like AWS.

In a traditional web application, there is the front-end instance (typically the user
interface), and the backend database instance. In larger and more complex systems,
there are many more systems but they all will interact with one or more databases.
These non-database systems can be easily architected to be highly available and are
generally cheap to scale out when the load becomes high (cheap in this case means
that it can be done either by an automated process or has very little effort involved
in distributing work).

Databases, on the other hand, require quite a bit of forethought, architecture,
planning, and resources to scale. It is not very likely that a database can be optimized
or modified without downstream effects on users and systems. Almost every reader,
during normal web activity, has likely encountered the dreaded error: Database
Error: Unable to connect to the database: Could not connect to MySQL.

There are countless issues that can cause this, but thankfully there are just as many
patterns and software offerings to help mitigate this downtime. Most patterns here
are common to any high availability pattern in the way that the core is based on
replication and fail-over.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[118]

It should be noted that AWS offers an SLA governance on their RDS, which takes care
of most of the common system administration woes such as uptime and availability. It
should also be noted that from an operations perspective, RDS is designed to alleviate
cost in general. Typically, running a database instance from RDS is much faster to
start as it requires little system information and allows creation through the UI. The
database instance is also slightly cheaper than running a dedicated EC2 instance, and
can be configured to allow automatic security patches. The RDS service does not solve
the scalability problem as there is no way to create data shards or small optimization
tweaks such as caching. This chapter will cover a few of the patterns that touch on
these issues. These will be:

•	 Database replication pattern
•	 Read replica pattern
•	 In-memory cache pattern
•	 Sharding write pattern

Database replication pattern
The first pattern we will discuss will cover fault tolerance. To maintain zero-downtime
to an end user will be a master-client configuration with full replication of data. It is
one thing to have a backup of the actual data, but it is important to be able to continue
to serve requests even if the data center hosting the instance experiences issues or
upgrades, and causes a termination. Consider another scenario in which the database
requires system-level updates that would cause it to not be available.

This could be alleviated by having a separate up-to-date instance in a different
availability zone. We will first create our master and prepare it to be a MySQL
master instance. Launch an EC2 instance from the AWS Linux AMI and SSH
into it when it is ready:

$ sudo yum install -y mysql mysql-server >/dev/null 2>&1

$ sudo sed -i.bak 's/\[mysqld\]/[mysqld]\nlog-bin=mysql-bin\nserver-
id=1/g' /etc/my.cnf

$ sudo service mysqld start >/dev/null 2>&1

$ mysqladmin -u root password 'abc1234!'

$ cat <<EOF | mysql -uroot -pabc1234\!

GRANT SELECT, PROCESS, REPLICATION CLIENT, REPLICATION SLAVE, RELOAD ON
. TO 'repl' IDENTIFIED BY 'slavepass';

GRANT ALL ON *.* TO 'root'@'%' IDENTIFIED BY 'abc1234!';

FLUSH PRIVILEGES;

FLUSH TABLES WITH READ LOCK;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[119]

SHOW MASTER STATUS;

UNLOCK TABLES;

EOF

File Position Binlog_Do_DB Binlog_Ignore_DB

mysql-bin.000003 637

This instance is now configured as a master and will allow a slave instance to
replicate from it using a repl user. We will now configure the slave. It is important
to make note of the information from the output from the command SHOW MASTER
STATUS; under File Position and Binlog_Do_DB, as we will need them in the
slave configuration. Launch another EC2 instance from the AWS Linux AMI into
a different geographical availability zone and SSH into it when it is ready (please
note that some items may require change based on your configuration and will
be in bold).

It is important to note that the master database instance must
be configured with appropriate security groups to allow
inbound connections from the slave instance. This will be true
for all examples in this chapter.

$ sudo yum install -y mysql mysql-server >/dev/null 2>&1

$ sudo sed -i.bak 's/\[mysqld\]/[mysqld]\nlog-bin=mysql-bin\nserver-
id=2/g' /etc/my.cnf

$ sudo service mysqld start >/dev/null 2>&1

$ mysqladmin -u root password 'abc1234!'

$ cat <<EOF | mysql -uroot -pabc1234\!

CHANGE MASTER TO MASTER_HOST='10.203.30.61', MASTER_USER='repl', MASTER_
PASSWORD='slavepass', MASTER_LOG_FILE='mysql-bin.000003', MASTER_LOG_
POS=637;

start slave;

EOF

$ mysql -uroot -pabc1234\! -e 'show slave status\G' | grep Slave_IO_State

 Slave_IO_State: Waiting for master to send event

The final command shows the state Waiting for master to send event,
which means it is properly configured and ready to replicate. We will now create a
database, table, and some data, and verify that it replicates to the slave. SSH back
into the master instance:

$ cat <<EOF | mysql -uroot -pabc1234\!

create database mydb;

use mydb;

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[120]

create table people (

id INT AUTO_INCREMENT PRIMARY KEY,

firstname varchar(50),

lastname varchar(50)

);

EOF

$ for i in {1..10}; do

 random_text=$(tr -dc a-z0-9 </dev/urandom | tr 0-9 ' \n' | sed 's/^
*//' | fmt | grep -E '[a-z]+\s[a-z]+' | head -n 1)

 first_name=$(echo $random_text | awk '{print $1}')

 last_name=$(echo $random_text | awk '{print $2}')

cat <<EOF | mysql -uroot -pabc1234\! mydb

insert into people (firstname, lastname) values ('$first_name', '$last_
name');

EOF

done

$ mysql -uroot -pabc1234\! mydb -e 'select count(*) from files;'

+----------+

| count(*) |

+----------+

| 10 |

+----------+

The previous snippet creates a database mydb and a table people. It then uses some
clever bash to generate random gibberish names to insert into the table. You can see
from the final line that there are 10 rows in the database. Let's now verify that it has
replicated to the slave. SSH into the slave instance:

$ mysql -uroot -pabc1234\! mydb -e 'select count(*) from files;'

+----------+

| count(*) |

+----------+

| 10 |

+----------+

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

For this pattern we are complete, as we now have two database instances with
identical data. From an operations perspective, if the master database experienced a
failure or needed to be upgraded, all that would need to happen would be to point
the application servers to the slave instance. It should be noted that, in this pattern,
it is not appropriate to put these instances behind a load balancer of any kind as we
have only solved the replication and availability issue. If the instance is needed to
handle additional load, a different pattern would need to be applied. Also, if data
were written to the master and immediately retrieved, it might not be available from
the slave instance. A final point to note is that this is a one-way synchronization from
the master to the slave. Data written to the slave will not propagate to the master.

Read replica pattern
In the previous database replication pattern, we did a full 1:1 replication of data
from the master to a slave, more or less as a backup or failover policy. It might be
applicable, however, to use the slave as a read-only instance and use the master
as a write or update instance. This would allow us to easily configure multiple
replications of the data.

The trick to this one is that it is not subject to traditional load-balancing algorithms. If
we configure the slaves as read-only instances, then we cannot allow applications to
attempt any write executions. To do this, we will use a software on the master called
MySQL proxy with a custom proxy script. This script will inspect the execution and
determine what instance to issue the command to. The master will receive write
commands and the slaves will receive read commands. There are other ways to
handle this, and it could be done with other proxy softwares such as HAproxy, or
even cluster management tools such as MySQL Fabric or Galera.

More information on MySQL Fabric can be found at http://
www.mysql.com/products/enterprise/fabric.html.
Additional information on Galera can be found at http://
galeracluster.com/products/.

First, we will configure MySQL proxy on the master instance created in the previous
pattern. In the previous pattern, however, we did not configure the slave to allow
connections from the master. Since MySQL proxy is running on the master, we need
to allow it to issue read only, or SELECT statements from the master instance. SSH
into the slave instance:

$ mysql -uroot -pabc1234\! -e "GRANT SELECT ON *.* TO
'root'@'10.203.30.61' IDENTIFIED BY 'abc1234\!';"

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[122]

Now the master can connect to the slave, so SSH into the master instance and install
MySQL proxy (provided by EPEL) and download a copy of the rw-splitting.lua
script into /usr/local/bin:

$ sudo yum install -y http://dl.fedoraproject.org/pub/epel/6/x86_64/
mysql-proxy-0.8.5-1.el6.x86_64.rpm >/dev/null 2>&1

$ curl –s https://raw.githubusercontent.com/drmingdrmer/mysql-proxy-xp/
master/lib/rw-splitting.lua | sudo tee -a /usr/local/bin/rw-splitting.lua
>/dev/null 2>&1

$ sudo sed -i.bak 's/#proxy-lua-script =.*/proxy-lua-script = \/usr\/
local\/bin\/rw-splitting.lua/g' /etc/mysql-proxy.cnf

Next, we will configure MySQL proxy to know where the read-write instance lives,
or in this case 10.203.30.61:

$ sudo sed -i.bak 's/proxy-backend-addresses =.*/proxy-backend-addresses
= 10.203.30.61:3306/g' /etc/mysql-proxy.cnf

Now we must configure the proxy to know where the read-only instance is, or in this
case 10.203.30.60:

$ sudo sed -i.bak 's/#proxy-read-only-backend-addresses =.*/proxy-read-
only-backend-addresses = 10.203.30.60:3306/g' /etc/mysql-proxy.cnf

$ sudo service mysql-proxy start

Starting mysql-proxy: [OK]

Finally, we must prove that our splitting actually works. Note, however, that it
might take a few moments or even a few minutes for MySQL proxy to pick up
the read-only instance and allow it to be used as such:

$ mysql -uroot -pabc1234\! -h127.0.0.1 -P3307 mydb -e 'select @@
hostname;'

+------------------+

| @@hostname |

+------------------+

| ip-10-203-30-60 |

+------------------+

$ mysql -uroot -pabc1234\! -h127.0.0.1 -P3307 mydb -e ' insert into
files (firstname, lastname) values ("asdf", "foo"); select @@hostname;'

+------------------+

| @@hostname |

+------------------+

| ip-10-203-30-61 |

+------------------+

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

What we have done now is to actually optimize the replication process, to be useful
to the application layer that sits on top of the database. The only difference to the
application user is that we are using the port 3307 for MySQL proxy. If we wanted
this to be truly invisible to other services and systems, we would place the proxy
on its own instance on port 3306 and give that information to the application layer.
However, this does not resolve the issue of synchronization lag. If the application
wrote data and immediately retrieved it, there exists potential for the data to not be
immediately available.

Software such as the previously mentioned Galera claims to reduce this issue.
However, there are other ways to configure the database to scale outwards without
synchronization lag, which will be discussed in the final sharding write pattern. This
pattern is now complete.

In-memory cache pattern
While it is important to create a database in which the data is highly available, there
are other optimizations possible, depending on the structure. If an application is very
read-heavy but does not write very often, it might make sense to use a read-only
database with splitting, as designed in the previous pattern. It might also serve the
user or consuming system to cache the data so that it does not have to be retrieved
on every request.

Consider an application that uses pagination to display information to a user. A
typical query might look like SELECT * FROM products WHERE category=23
LIMIT 50 OFFSET 1000;. At first glance, this might be acceptable, but for this
particular query, the application will execute and retrieve the first 1000 rounds,
discard them, and then return the next 50 rows. The retrieval of the 1000 would be a
waste of time and resources on data that is changing at a very quick rate. This query
will degrade over time as the system continues to grow.

A simple way to offset this cost would be to cache the results wherever possible.
There is a downstream effect, however, in that the application must handle this
logic; so it is not a transparent optimization to the dependent systems. A typical way
to handle this would be to use a fast key-value store such as Redis, for results that
have already been computed. From the application perspective, the logic would be
as simple as checking the cache for the data, and either using it or doing a database
lookup if nothing was found.

We will show a simple example for this using the same pattern as before. The first
thing we will do is create a Redis store. You may use the steps from the previous
state sharing pattern to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[124]

Once the Redis store is configured, we will configure the MySQL database. If you are
using one of the previous patterns to create a database, you may skip this section.
However, note that there is an addition of a new column in the files table named
about that will be required to follow along. Otherwise, launch an EC2 instance from
the AWS Linux AMI and SSH into it when it is ready:

$ sudo yum install -y mysql mysql-server >/dev/null 2>&1

$ sudo service mysqld start >/dev/null 2>&1

$ mysqladmin -u root password 'abc1234!'

$ cat <<EOF | mysql -uroot -pabc1234\!

create database mydb;

use mydb;

create table files (

id INT AUTO_INCREMENT PRIMARY KEY,

firstname varchar(50),

lastname varchar(50),

about varchar(1024)

);

EOF

Now that the database is configured, we will use the handy bash code from previous
snippets to generate and insert random data into it:

$ for i in {1..10}; do

 # generate random strings space separated

 random_text=$(tr -dc a-z0-9 </dev/urandom | tr 0-9 ' \n' | sed 's/^
*//' | fmt | grep -E '[a-z]+\s[a-z]+' | head -n 1)

 first_name=$(echo $random_text | awk '{print $1}')

 last_name=$(echo $random_text | awk '{print $2}')

 # generate a random 1024 character string to fill the 'about' col

 about=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 1024 | head -n
1)

cat <<EOF | mysql -uroot -pabc1234\! mydb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

insert into files (firstname, lastname, about) values ('$first_name',
'$last_name', '$about');

EOF

done

$ mysql -uroot -pabc1234\! mydb -e 'select count(*) from files;' #verify

+----------+

| count(*) |

+----------+

| 10 |

+----------+

Now that we have some random data in the database, we will write a PHP
application to utilize our cache. The index page will query the files table for
names, and create links to a page that displays the information from the about
column for that person. We will store this about information into Redis, with
the key being their lastname. As a hash, it might resemble:

{

 "Young" => "The Author",

 "Smith" => "Some guy"

}

If Redis has not cached the about information, we will query the database and then
store it into Redis. First, let's set up php 5.5 on our machine:

$ sudo yum install -y php55 php55-pecl-redis php55-mysqlnd >/dev/null
2>&1

$ sudo service httpd start

 [OK]

Now that PHP is set up, we will create our index page that queries MySQL for files.
Save this into file /var/www/html/index.php;

<?php
 $redis=new Redis();
 $redis_connected= $redis->connect('127.0.0.1', 6379);
 if(!$redis_connected) {
 die("Cannot connect to redis server.\n");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[126]

 $mysql_conn = mysql_connect('localhost', 'root', 'abc1234!')
 or die('Could not connect: ' . mysql_error());
 mysql_select_db('mydb') or die('Could not select database');

 $query = "SELECT firstname, lastname FROM files";
 $result = mysql_query($query) or die('Query failed: ' . mysql_
error());
 while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
 $lastname=$line['lastname'];
 $firstname=$line['firstname'];
 echo "$firstname $lastname</
a>
";
 }
?>

If you were to browse to your EC2 instance via a web browser, you would be greeted
with a list of gibberish names similar to the following screenshot:

The links will not work until we create the about page. Create a new file at /var/
www/html/about.php that contains:

<?php
 $redis=new Redis();
 $redis_connected= $redis->connect('127.0.0.1', 6379);
 if(!$redis_connected) {
 // some other code to handle connection problem
 die("Cannot connect to redis server.\n");
 }

 $mysql_conn = mysql_connect('localhost', 'root', 'abc1234!')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

 or die('Could not connect: ' . mysql_error());
 mysql_select_db('mydb') or die('Could not select database');

 $lname = htmlspecialchars($_GET["lname"]);
 $about = '';
 $source = '';
 if ($redis->exists($lname)) {
 $about = $redis->get($lname);
 $source = "Redis";
 } else {
 $query = "SELECT * FROM files WHERE lastname='$lname'";
 $result = mysql_query($query) or die('Query failed: ' . mysql_
error());
 $about = mysql_fetch_array($result, MYSQL_ASSOC)['about'];
 $redis->set($lname, $about);
 $source = 'MySQL';
 }
 echo "[$source] $about";
?>

Now if you click any of the links from your EC2 instance, you will be greeted with
the information from the corresponding about column as well as the source, either
MySQL or Redis. The first time you click one of the names from the index page, the
source will show MySQL, as shown in the following screenshot:

However, if you refresh the about page or click one of the links multiple times, you
will see the source change to Redis, as shown in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[128]

This pattern can be further modified to optimize many portions of a web application
in which data caching is applicable. Information that changes often or needs to be
at its absolute latest state, should either not be cached or the caching logic should be
very carefully architected, so as to not propagate inconsistent or wrong information
to the consuming systems or users.

Sharding write pattern
The previous chapter focused a bit on optimization in terms of splitting the query
across cloned instances, which would be only part of a true database scalability
concern. The database would still have performance concerns, as there is replication
lag coupled with a fragile splitting mechanism through the proxy. The best route to
take to reduce all of these concerns, is to architect a distributed database from the
very beginning.

In the sharding write pattern, we take the previous concepts a bit further in-depth,
by not analyzing the query to determine which instance to execute against. Instead,
we use a cluster management tool called MySQL Fabric, which was announced by
Oracle in early 2014. Fabric provides a single API to create and manage farms (data
centers) of databases or even farms of farms of databases. Using this method, we are
able to create multiple database instances, and from a Fabric node, group them into
many different layouts to achieve high availability.

More information on MySQL Fabric can be found on
their documentation page at http://www.mysql.com/
products/enterprise/fabric.html.

Unlike other patterns, I will not cover the installation steps for configuring a Fabric
server in great detail, but will explain the end-goal as though we have an operational
cluster. The reason for this is that there is great overhead involved with Fabric that is
not relevant to the end-goal.

Sharding as a concept refers to a horizontal partitioning of data within a database.
For instance, if we had a table users that contained hundreds of thousands of rows,
running searches would take a very long time to complete if all of the data were kept
in a single instance. If this database were replicated to another server, then we could
expect the replication to never be completed on the slave, as the amount of data
would likely be changing at a blazingly fast pace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

The first thing a database administrator might suggest would be to partition the
database into partitions, which is a very large architectural concern. Fabric exists
to make this management a much smaller concern, as it provides a singular API to
create and manage these setups.

Consider the original database example, which conceptually would resemble the
following figure:

The first improvement we created with the read replica pattern was to increase
throughput to the system as a whole by making use of the slave instance as a
read-only instance. With Fabric, we open up an entire possibility for improvements
right away:

•	 Create the Fabric node, database, and two shards in a single availability zone
•	 Create a similar Fabric node, database, and two shards in different

availability zones

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Databases

[130]

•	 Create two Fabric nodes in different availability zones behind a single load
balancer

A lot of issues are mitigated if the database is designed as seen in the previous
image. From the outside of the database, we have added throughput by:

•	 Having horizontal nodes behind the load balancer to determine where to
execute

•	 Replicating asynchronously to a read-only database for query optimization
•	 Partitioning the data into shards for distributed writing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

We have also increased our high availability in many ways as well:
•	 The entry points to the database are load balanced in separate availability

zones
•	 The data from the primary database is replicated into a cluster in a different

availability zone

From a database perspective, Fabric takes care of all of the failover for the database. If
the primary database experiences any unrecoverable issues, that failure will be picked
up from the Fabric management instance above it. For example, if Availability Zone 1
in the diagram experienced any malfunction, the Fabric node in Availability Zone 2
could be promoted and changed from read-only to read-write, and vice versa. If
either of the availability zones attached to the load balancer experience issues, those
issues could be picked up and handled accordingly by a health check directly into
the instance via the Fabric API.

One important thing to note if using high availability database software such as
Fabric is that the application must be aware of the infrastructure at some level. While
the application should not understand the underlying architecture, it cannot interact
with Fabric in a transparent manner. For example, MySQL has provided a connector
for Fabric but it is not a drop-in replacement for the standard MySQL connector.
The methods and calls are slightly different and there are new actions available to a
consuming system. The application gains a lot of power through the API, in terms of
being able to ask for database instances and layout information from the Fabric API;
so it should be constructed carefully to do so.

Summary
In this chapter, we covered a few techniques and patterns for relational databases.
In the database replication pattern, we created a MySQL master and client system
on EC2 instances to demonstrate one-way replication of data. In the read replica
pattern, we further optimized our database access by building on the database
replication pattern, by allowing access to the replicated slave instance. We optimized
the queries by installing a proxy on the master that decided whether the statements
should be executed on the master with write access, or on the slave with read-only
access. We then moved on to the In-memory cache pattern, in which we coupled a
fast key-value store with our database for read-heavy applications and demonstrated
its usage. Lastly, we moved into the sharding write pattern, in which we touched in
theory on how to utilize cluster software such as MySQL Fabric to create extremely
versatile and optimized clusters of databases that can handle many issues.

In the next chapter, we will discuss how to process batch data throughout systems
that scale independently or ad-hoc.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[133]

Patterns for Data Processing
Throughout the previous chapters, services and infrastructure were described in
the traditional fashion of front-end instances that users interact with, middle-tier
instances that other systems (including the front-end) interact with, and possibly a
back-end instance such as a database. A simple example can be visualized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[134]

We have described quite a few patterns that help to scale this type of infrastructure
at each point, and all of them are valid here; but we can see a bottleneck in the API
server. Let's presume that the system as-a-whole is working properly and all is
well. Today, however, we have got an unexpected 500% increase in traffic to the
front-end server.

We might scale the front-end instances but that would only move the bottleneck to
the API instances. Again we could scale the API server, but perhaps the traffic is
not utilizing S3 or Redis at all, and most of the traffic is going through to the RDS
instance. Scaling out the API server solves the problem, but not in the most optimal
fashion in terms of resources. To be as optimal as possible, we would only want to
scale in areas that are generating the most work, or by splitting the API server into
very specific pieces that do one type of access instead of doing all.

This is a new trend in infrastructure architecture called microservices model. In this
architecture, all services live by the core principle of single responsibility. Much like
in programming, this means that each part of the infrastructure is responsible for
one action and does it well. Instead of having a generic and complex API server,
we would have multiple API servers that are independently scalable.

Using metrics, monitoring, and deep health checks, the system can expand and
shrink in certain areas ad-hoc. To enable this, we will design our system as a series of
workers that get jobs from Amazon's SQS. SQS is a fast and reliable queue provided
as a service, meaning Amazon provides an SLA. In a nutshell, this means that you
can provide it with data (a message) and retrieve it at any point. Any message taken
must be acknowledged in a configurable time, or the service assumes that it was not
processed and puts it back into the queue.

More information on Amazon SQS can be found on their product
page at http://aws.amazon.com/sqs/.

There are also non-Amazon options available, such as RabbitMQ, Kafka, ActiveMQ,
and others, but deploying these ourselves would require figuring out reliability
and redundancy. We will utilize the Amazon-provided service for the following
examples and scenarios.

In this chapter we will cover:

•	 Queuing chain pattern
•	 Priority queue pattern
•	 Job observer pattern

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[135]

Queuing chain pattern
In the queuing chain pattern, we will use a type of publish-subscribe model
(pub-sub) with an instance that generates work asynchronously, for another
server to pick it up and work with. This is described in the following diagram:

The diagram describes the scenario we will solve, which is solving fibonacci numbers
asynchronously. We will spin up a Creator server that will generate random integers,
and publish them into an SQS queue myinstance-tosolve. We will then spin up
a second instance that continuously attempts to grab a message from the queue
myinstance-tosolve, solves the fibonacci sequence of the numbers contained in the
message body, and stores that as a new message in the myinstance-solved queue.

Information on the fibonacci algorithm can be found at http://
en.wikipedia.org/wiki/Fibonacci_number.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[136]

This scenario is very basic as it is the core of the microservices architectural model. In
this scenario, we could add as many worker servers as we see fit with no change to
infrastructure, which is the real power of the microservices model.

The first thing we will do is create a new SQS queue. From the SQS console select
Create New Queue.

From the Create New Queue dialog, enter myinstance-tosolve into the Queue Name
text box and select Create Queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[137]

This will create the queue and bring you back to the main SQS console where you
can view the queues created. Repeat this process, entering myinstance-solved for the
second queue name. When complete, the SQS console should list both the queues.

In the following code snippets, you will need the URL for the queues. You can
retrieve them from the SQS console by selecting the appropriate queue, which will
bring up an information box. The queue URL is listed as URL in the following
screenshot:

Next, we will launch a creator instance, which will create random integers and write
them into the myinstance-tosolve queue via its URL noted previously. From the EC2
console, spin up an instance as per your environment from the AWS Linux AMI.
Once it is ready, SSH into it (note that acctarn, mykey, and mysecret need to be
replaced with your actual credentials):

[ec2-user@ip-10-203-10-170 ~]$ [[-d ~/.aws]] && rm -rf ~/.aws/config ||
mkdir ~/.aws

[ec2-user@ip-10-203-10-170 ~]$ echo $'[default]\naws_access_key_id=mykey\
naws_secret_access_key=mysecret\nregion=us-east-1' > .aws/config

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[138]

[ec2-user@ip-10-203-10-170 ~]$ for i in {1..100}; do

 value=$(shuf -i 1-50 -n 1)

 aws sqs send-message \

 --queue-url https://queue.amazonaws.com/acctarn/myinstance-tosolve \

 --message-body ${value} >/dev/null 2>&1

done

Once the snippet completes, we should have 100 messages in the myinstance-tosolve
queue, ready to be retrieved.

Now that those messages are ready to be picked up and solved, we will spin up a
new EC2 instance: again as per your environment from the AWS Linux AMI. Once it
is ready, SSH into it (note that acctarn, mykey, and mysecret need to be valid and
set to your credentials):

[ec2-user@ip-10-203-10-169 ~]$ [[-d ~/.aws]] && rm -rf ~/.aws/config ||
mkdir ~/.aws

[ec2-user@ip-10-203-10-169 ~]$ echo $'[default]\naws_access_key_id=mykey\
naws_secret_access_key=mysecret\nregion=us-east-1' > .aws/config

[ec2-user@ip-10-203-10-169 ~]$ sudo yum install -y ruby-devel gcc >/dev/
null 2>&1

[ec2-user@ip-10-203-10-169 ~]$ sudo gem install json >/dev/null 2>&1

[ec2-user@ip-10-203-10-169 ~]$ cat <<EOF | sudo tee -a /usr/local/bin/
fibsqs >/dev/null 2>&1

#!/bin/sh

while [true]; do

 function fibonacci {

 a=1

 b=1

 i=0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[139]

 while [\$i -lt \$1]

 do

 printf "%d\n" \$a

 let sum=\$a+\$b

 let a=\$b

 let b=\$sum

 let i=\$i+1

 done

 }

 message=\$(aws sqs receive-message --queue-url https://queue.amazonaws.
com/acctarn/myinstance-tosolve)

 if [[-n \$message]]; then

 body=\$(echo \$message | ruby -e "require 'json'; p JSON.parse(gets)
['Messages'][0]['Body']" | sed 's/"//g')

 handle=\$(echo \$message | ruby -e "require 'json'; p JSON.
parse(gets)['Messages'][0]['ReceiptHandle']" | sed 's/"//g')

 aws sqs delete-message --queue-url https://queue.amazonaws.com/
acctarn/myinstance-tosolve --receipt-handle \$handle

 echo "Solving '\${body}'."

 solved=\$(fibonacci \$body)

 parsed_solve=\$(echo \$solved | sed 's/\n/ /g')

 echo "'\${body}' solved."

 aws sqs send-message --queue-url https://queue.amazonaws.com/acctarn/
myinstance-solved --message-body "\${parsed_solve}"

 fi

 sleep 1

done

EOF

[ec2-user@ip-10-203-10-169 ~]$ sudo chown ec2-user:ec2-user /usr/local/
bin/fibsqs && chmod +x /usr/local/bin/fibsqs

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[140]

There will be no output from this code snippet yet, so now let's run the fibsqs
command we created. This will continuously poll the myinstance-tosolve queue,
solve the fibonacci sequence for the integer, and store it into the myinstance-solved
queue:

[ec2-user@ip-10-203-10-169 ~]$ fibsqs

Solving '48'.

'48' solved.

{

 "MD5OfMessageBody": "73237e3b7f7f3491de08c69f717f59e6",

 "MessageId": "a249b392-0477-4afa-b28c-910233e7090f"

}

Solving '6'.

'6' solved.

{

 "MD5OfMessageBody": "620b0dd23c3dddbac7cce1a0d1c8165b",

 "MessageId": "9e29f847-d087-42a4-8985-690c420ce998"

}

While this is running, we can verify the movement of messages from the tosolve queue
into the solved queue by viewing the Messages Available column in the SQS console.

This means that the worker virtual machine is in fact doing work, but we can prove
that it is working correctly by viewing the messages in the myinstance-solved
queue. To view messages, right click on the myinstance-solved queue and select
View/Delete Messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[141]

If this is your first time viewing messages in SQS, you will receive a warning
box that displays the impact of viewing messages in a queue. Select Start polling
for Messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[142]

From the View/Delete Messages in myinstance-solved dialog, select Start Polling
for Messages. We can now see that we are in fact working from a queue.

Priority queue pattern
The previous queuing chain pattern is a great example of how to begin working
with independent systems in a complex setup. Using the same example, we can
show how to give priority to queues using third-party tools. Imagine a system
where the workers might have multiple queues to work from. You can scale the
worker systems independently by dedicating some instances to one queue and
some instances to the other.

However, the problem in doing so is that you will have duplicate logic across both
sets of instances. Using the previous example, all workers would still solve the
problem with the same fibonacci algorithm but we will have to manage two sets of
instances. Instead, the better route would be to assign a weight to the queues and
have a single pool of instances assigned to all the queues. This would mean that you
must only manage a single set of resources and let the instances determine how to
grab from the queues.

This logic of assigning weights is custom but luckily it is not a unique problem and
there are multiple third-party solutions available to make this much easier. This
example can be visualized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[143]

In the diagram, you can see that not much has changed throughout the system as a
whole, except that the creator machine will generate random numbers into a new
queue myinstance-tosolve-priority. The worker instance will now have to determine
which queue to pick from, before solving the problem and submitting the answer as
before. With this setup, we are very flexible with the worker machine and could spin
up as many as we wished without having to modify any system or tie it to a specific
input queue.

Before we start, if you are following along then first terminate the running worker
instance created in the previous pattern from the EC2 console. Next, ensure that
the myinstance-solved queue has no messages. This will help us to make sure that
this example is behaving as expected. To do this, from the SQS console, right click
the myinstance-solved queue and select View/Delete Messages as demonstrated
previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[144]

From the View/Delete Messages in myinstance-solved dialog, set the View up to:
text box to a high number and then select Start Polling for Messages as before. Select
the checkbox next to each message and select Delete Messages.

From the new Delete Messages confirmation dialog, select Yes, Delete Checked
Messages. The messages are now gone from the queue.

To start, let's create a new queue named myinstance-tosolve-priority. You may
create this the same way as we did in the previous pattern. Once it has been
created, make note of its URL from the SQS console. We will now generate random
numbers equally into both queues. You may either modify the creator instance
from the previous pattern or launch a new instance from the EC2 console as per
your environment, and SSH into it when it is ready (note that acctarn, mykey, and
mysecret need to be valid):

[ec2-user@ip-10-203-10-79 ~]$ [[-d ~/.aws]] && rm -rf ~/.aws/config ||
mkdir ~/.aws

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

[ec2-user@ip-10-203-10-79 ~]$ echo $'[default]\naws_access_key_id=mykey\
naws_secret_access_key=mysecret\nregion=us-east-1' > .aws/config

[ec2-user@ip-10-203-10-79 ~]$ for i in {1..100}; do

 value=$(shuf -i 1-50 -n 1)

 aws sqs send-message \

 --queue-url https://queue.amazonaws.com/acctarn/myinstance-tosolve \

 --message-body ${value} >/dev/null 2>&1

done

[ec2-user@ip-10-203-10-79 ~]$ for i in {1..100}; do

 value=$(shuf -i 1-50 -n 1)

 aws sqs send-message \

 --queue-url https://queue.amazonaws.com/acctarn/myinstance-tosolve-
priority \

 --message-body ${value} >/dev/null 2>&1

done

At this point, we have messages ready in both myinstance-tosolve and myinstance-
tosolve-priority queues. We will create a new worker that uses a third-party piece
of software called Shoryuken, to set weights on SQS queues and retrieve messages
based on an internal algorithm.

More information on Shoryuken can be found on its GitHub page
at https://github.com/phstc/shoryuken.

Next, launch an instance via the EC2 console from the AWS Linux AMI as per
your environment and SSH into it when it is ready (note that acctarn, mykey,
and mysecret need to be valid):

[ec2-user@ip-10-203-10-82 ~]$ [[-d ~/.aws]] && rm -rf ~/.aws/config ||
mkdir ~/.aws

[ec2-user@ip-10-203-10-82 ~]$ echo $'[default]\naws_access_key_id=mykey\
naws_secret_access_key=mysecret\nregion=us-east-1' > .aws/config

[ec2-user@ip-10-203-10-82 ~]$ cat <<EOF | sudo tee -a /usr/local/bin/
fibsqs >/dev/null 2>&1

#!/bin/sh

function fibonacci {

 a=1

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[146]

 b=1

 i=0

 while [\$i -lt \$1]

 do

 printf "%d\n" \$a

 let sum=\$a+\$b

 let a=\$b

 let b=\$sum

 let i=\$i+1

 done

}

number="\$1"

solved=\$(fibonacci \$number)

parsed_solve=\$(echo \$solved | sed 's/\n/ /g')

aws sqs send-message --queue-url https://queue.amazonaws.com/acctarn/
myinstance-solved --message-body "\${parsed_solve}"

exit 0

EOF

[ec2-user@ip-10-203-10-82 ~]$ sudo chown ec2-user:ec2-user /usr/local/
bin/fibsqs && sudo chmod +x /usr/local/bin/fibsqs

The preceding script is slightly different from the one in the previous example, it
takes a parameter (the number to solve) as input. We will be calling it from a ruby
script that uses shoryuken to get the messages. We will install the prerequisites next:

[ec2-user@ip-10-203-10-82 ~]$ sudo yum install -y libxml2 libxml2-devel
libxslt libxslt-devel gcc ruby-devel >/dev/null 2>&1

 [ec2-user@ip-10-203-10-82 ~]$ sudo gem install nokogiri -- --use-system-
libraries >/dev/null 2>&1

 [ec2-user@ip-10-203-10-82 ~]$ sudo gem install shoryuken >/dev/null 2>&1

We have now installed the shoryuken package but we must configure it. Create
a file named config.yml with the contents (note that mykey, and mysecret need
to be valid):

aws:

 access_key_id: mykey

 secret_access_key: mysecret

 region: us-east-1 # or <%= ENV['AWS_REGION'] %>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

 receive_message:

 attributes:

 - receive_count

 - sent_at

concurrency: 25, # The number of allocated threads to process messages.
Default 25

delay: 25, # The delay in seconds to pause a queue when it's
empty. Default 0

queues:

 - [myinstance-tosolve-priority, 2]

 - [myinstance-tosolve, 1]

With the required configuration file in place, we can now create a ruby script that
contains the information to execute messages from the queue. Create a file called
worker.rb and give it the contents:

class MyWorker

 include Shoryuken::Worker

 shoryuken_options queue: 'myinstance-tosolve', auto_delete: true

 def perform(sqs_msg, body)

 puts "normal: #{body}"

 %x[/usr/local/bin/fibsqs #{body}]

 end

end

class MyFastWorker

 include Shoryuken::Worker

 shoryuken_options queue: 'myinstance-tosolve-priority', auto_delete:
true

 def perform(sqs_msg, body)

 puts "priority: #{body}"

 %x[/usr/local/bin/fibsqs #{body}]

 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[148]

We are now ready to run this. There will be a lot of output, but we will direct it into a
file for later:

[ec2-user@ip-10-203-10-82 ~]$ shoryuken -r /home/ec2-user/worker.rb -C /
home/ec2-user/config.yml >output.log

Once it has finished running, we will look for the messages in the myinstance-solved
queue in the SQS console, as described in the previous pattern. Unfortunately, the
script won't stop executing once it's done; it will continue to poll for messages. To
end it, ensure that there are 200 messages in the Messages Available column of the
myinstance-solved queue in the SQS console.

When the queue has all of the expected messages in it, you can cancel the running
command. We now know that the fibonacci numbers are still being solved correctly,
but let's prove that it gave priority to the myinstance-tosolve-priority queue by
viewing the output.log file. First, let's parse out the relevant output to show
which worker got a job and and the contents of the message body into the log
file parsed_output.log:

[ec2-user@ip-10-203-10-82 ~]$ cat output.log | grep -E
'^normal:|^priority:' >parsed_output.log

Now, using an editor of your choice, count the duplicated lines. This will tell us how
many messages were pulled from the myinstance-tosolve queue (or normal in the
output) and how many were pulled from the myinstance-tosolve-priority queue
(or priority in the output). Repeat the counting. My output showed in this order: 10
priority, 10 normal, 15 priority, 10 normal, 3 priority, 1 normal, 20 priority, 1 normal,
2 priority, 10 normal, 11 priority, 2 normal, 2 priority, 1 normal, 37 priority, 65
normal. Since both of these add up to 100 individually and 200 total, my basic math
skills are up to par. As you can see from the pattern, priority messages were in fact
given priority while normal messages were not fully neglected, but were fewer in
between until the priority queue had emptied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

Job observer pattern
The previous two patterns show a very basic understanding of passing messages
around a complex system, so that components (machines) can work independently
from each other. While they are a good starting place, the system as a whole could
improve if it were more autonomous. Given the previous example, we could very
easily duplicate the worker instance if either one of the SQS queues grew large, but
using the Amazon-provided CloudWatch service we can automate this process.
Using CloudWatch similar to the Scale out pattern from Chapter 2, Basic Patterns,
we might end up with a system that resembles the following diagram:

For this pattern, we will not start from scratch but directly from the previous priority
queuing pattern. The major difference between the previous diagram and the
diagram displayed in the priority queuing pattern is the addition of a CloudWatch
alarm on the myinstance-tosolve-priority queue, and the addition of an auto scaling
group for the worker instances.

The behavior of this pattern is that we will define a depth for our priority queue that
we deem too high, and create an alarm for that threshold. If the number of messages
in that queue goes beyond that point, it will notify the auto scaling group to spin up
an instance. When the alarm goes back to OK, meaning that the number of messages
is below the threshold, it will scale down as much as our auto scaling policy allows.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[150]

Before we start, make sure any worker instances are terminated.

The first thing we should do is create an alarm. From the CloudWatch console in
AWS, click Alarms on the side bar and select Create Alarm.

From the new Create Alarm dialog, select Queue Metrics under SQS Metrics.

This will bring us to a Select Metric section. Type myinstance-tosolve-priority
ApproximateNumberOfMessagesVisible into the search box and hit Enter. Select the
checkbox for the only row and select Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

From the Define Alarm, make the following changes and then select Create Alarm:

1.	 In the Name textbox, give the alarm a unique name.
2.	 In the Description textbox, give the alarm a general description.
3.	 In the Whenever section, set 0 to 1.
4.	 In the Actions section, click Delete for the only Notification.
5.	 In the Period drop-down, select 1 Minute.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[152]

6.	 In the Statistic drop-down, select Sum.

Now that we have our alarm in place, we need to create a launch configuration
and auto scaling group that refers this alarm. We have done this in Chapter 2,
Basic Patterns, so I will not cover it in great detail here.

Create a new launch configuration from the AWS Linux AMI with details as per your
environment. However, set the user data to (note that acctarn, mykey, and mysecret
need to be valid):

#!/bin/bash

[[-d /home/ec2-user/.aws]] && rm -rf /home/ec2-user/.aws/config ||
mkdir /home/ec2-user/.aws

echo $'[default]\naws_access_key_id=mykey\naws_secret_access_
key=mysecret\nregion=us-east-1' > /home/ec2-user/.aws/config

chown ec2-user:ec2-user /home/ec2-user/.aws -R

cat <<EOF >/usr/local/bin/fibsqs

#!/bin/sh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

function fibonacci {

 a=1

 b=1

 i=0

 while [\$i -lt \$1]

 do

 printf "%d\n" \$a

 let sum=\$a+\$b

 let a=\$b

 let b=\$sum

 let i=\$i+1

 done

}

number="\$1"

solved=\$(fibonacci \$number)

parsed_solve=\$(echo \$solved | sed 's/\n/ /g')

aws sqs send-message --queue-url https://queue.amazonaws.com/acctarn/
myinstance-solved --message-body "\${parsed_solve}"

exit 0

EOF

chown ec2-user:ec2-user /usr/local/bin/fibsqs

chmod +x /usr/local/bin/fibsqs

yum install -y libxml2 libxml2-devel libxslt libxslt-devel gcc ruby-devel
>/dev/null 2>&1

gem install nokogiri -- --use-system-libraries >/dev/null 2>&1

gem install shoryuken >/dev/null 2>&1

cat <<EOF >/home/ec2-user/config.yml

aws:

 access_key_id: mykey

 secret_access_key: mysecret

 region: us-east-1 # or <%= ENV['AWS_REGION'] %>

 receive_message:

 attributes:

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[154]

 - receive_count

 - sent_at

concurrency: 25, # The number of allocated threads to process messages.
Default 25

delay: 25, # The delay in seconds to pause a queue when it's
empty. Default 0

queues:

 - [myinstance-tosolve-priority, 2]

 - [myinstance-tosolve, 1]

EOF

cat <<EOF >/home/ec2-user/worker.rb

class MyWorker

 include Shoryuken::Worker

 shoryuken_options queue: 'myinstance-tosolve', auto_delete: true

 def perform(sqs_msg, body)

 puts "normal: #{body}"

 %x[/usr/local/bin/fibsqs #{body}]

 end

end

class MyFastWorker

 include Shoryuken::Worker

 shoryuken_options queue: 'myinstance-tosolve-priority', auto_delete:
true

 def perform(sqs_msg, body)

 puts "priority: #{body}"

 %x[/usr/local/bin/fibsqs #{body}]

 end

end

EOF

chown ec2-user:ec2-user /home/ec2-user/worker.rb /home/ec2-user/config.
yml

screen -dm su - ec2-user -c 'shoryuken -r /home/ec2-user/worker.rb -C /
home/ec2-user/config.yml'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

Next, create an auto scaling group that uses the launch configuration we just created.
The rest of the details for the auto scaling group are as per your environment.
However, set it to start with 0 instances and do not set it to receive traffic from
a load balancer.

Once the auto scaling group has been created, select it from the EC2 console and
select Scaling Policies. From here, click Add Policy to create a policy similar
to the one shown in the following screenshot and click Create:

Next, we get to trigger the alarm. To do this, we will again submit random numbers
into both the myinstance-tosolve and myinstance-tosolve-priority queues:

[ec2-user@ip-10-203-10-79 ~]$ [[-d ~/.aws]] && rm -rf ~/.aws/config ||
mkdir ~/.aws

[ec2-user@ip-10-203-10-79 ~]$ echo $'[default]\naws_access_key_id=mykey\
naws_secret_access_key=mysecret\nregion=us-east-1' > .aws/config

[ec2-user@ip-10-203-10-79 ~]$ for i in {1..100}; do

 value=$(shuf -i 1-50 -n 1)

 aws sqs send-message \

 --queue-url https://queue.amazonaws.com/acctarn/myinstance-tosolve \

 --message-body ${value} >/dev/null 2>&1

done

[ec2-user@ip-10-203-10-79 ~]$ for i in {1..100}; do

 value=$(shuf -i 1-50 -n 1)

 aws sqs send-message \

 --queue-url https://queue.amazonaws.com/acctarn/myinstance-tosolve-
priority \

 --message-body ${value} >/dev/null 2>&1

done

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Data Processing

[156]

After five minutes, the alarm will go into effect and our auto scaling group will
launch an instance to respond to it. This can be viewed from the Scaling History
tab for the auto scaling group in the EC2 console.

Even though our alarm is set to trigger after one minute, CloudWatch
only updates in intervals of five minutes. This is why our wait time
was not as short as our alarm.

Our auto scaling group has now responded to the alarm by launching an instance.

Launching an instance by itself will not resolve this, but using the user data from
the Launch Configuration, it should configure itself to clear out the queue, solve the
fibonacci of the message, and finally submit it to the myinstance-solved queue. If
this is successful, our myinstance-tosolve-priority queue should get emptied out.
We can verify from the SQS console as before.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

And finally, our alarm in CloudWatch is back to an OK status.

We are now stuck with the instance because we have not set any decrease policy.
I won't cover this in detail, but to set it, we would create a new alarm that triggers
when the message count is a lower number such as 0, and set the auto scaling group
to decrease the instance count when that alarm is triggered. This would allow us
to scale out when we are over the threshold, and scale in when we are under the
threshold. This completes the final pattern for data processing.

Summary
In this chapter, we covered some in-depth techniques on how to split up complex
systems into self-contained microservices. In the queuing chain pattern, we walked
through creating independent systems that use the Amazon-provided SQS service
that solve fibonacci numbers without interacting with each other directly. We
then took the topic a bit deeper in the priority queue pattern, and covered creating
multiple queues that have implicit weights upon them, so that one queue gets
worked from more frequently than the other queue. Lastly, we took the topic even
deeper in the job observer pattern, and covered how to tie in auto scaling policies
and alarms from the CloudWatch service to scale out when the priority queue gets
too deep.

In the next chapter, we will discuss patterns and topics designed to help with the
operations and maintenance of infrastructure deployed at AWS.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[159]

Patterns for Operation
and Maintenance

Many of the patterns discussed in this book so far have been focused on very narrow
paths through problems encountered in the Cloud, as well as a few areas where it is
possible to boost resiliency to different types of service interruptions. In this chapter,
we will take a small step back, and focus on a few advanced patterns that many
teams have implemented in different forms to solve core operational issues. In this
chapter, we will touch on:

•	 Bootstrap pattern: Dynamically pulling settings or initialization steps
on startup.

•	 Cloud dependency injection pattern: Injecting information to the machine
through external means.

•	 Stack deployment pattern: Deploying entire stacks of applications in
a single run.

•	 Monitoring integration pattern: Centralizing application and system logs
along with metrics.

•	 Web storage archive pattern: Moving and maintaining files from running
instances into long-term storage.

•	 Weighted transition pattern: Transitioning servers to different locations in
small portions to mitigate problems.

•	 Hybrid backup pattern: Using Cloud-storage as a backup for alternate
services on premises or in other Cloud locations.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[160]

The purpose of the topics in this chapter will be to elaborate on basic patterns and
create building blocks of sorts. Combining these patterns with previous patterns will
help to create some very unique and dynamic environments. These patterns will also
help to separate logic from the virtual machine images themselves, saving time and
effort when small tweaks are needed.

Bootstrap pattern
Looking back at the previous stamp pattern, we created an image of a virtual
machine at a point where it made many things easier, including scaling out or
even making one-time changes to enable the third-party software Vagrant.

A lot of times, the stamp pattern is used to solve the deployment concern of locking
an image at an application state. For example, if the team deploys a web page, they
might stamp the running instance after the web server has been configured with
Apache, SSL, PHP, etc. However, perhaps this server requires SSL so the image is
created, or stamped, after the certificate is installed. The even bigger risk is that SSL
keys, SSH keys, and so on should never be left on an AMI.

Certificates change and expire over time, so this means that the machine image
would become invalid at some point in its lifecycle. The best way to handle this
change without having to re-package the entire virtual machine would be to separate
the configuration (or certificates) from the machine itself. In the previous scenario,
a change to configuration such as the certificate would require fixing the image and
re-imaging it, as well as modifying any services or configuration that depend on the
previous image, such as launch configurations.

In the bootstrap pattern, we will configure a box as much as possible, but allow it to
be configured at startup, dynamically using user data. User data is an AWS concept
for startup configuration. For Windows instances, it requires the EC2Config utility
to be installed and configured, and allows normal command prompt as well as
Powershell scripting. For Linux instances, user data uses Bash scripting.

More detailed information on user-data can be found in the
documentation page at http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/user-data.html.

However, this pattern is more than just using user data. It does us no good to
configure an instance that cannot be changed later, so we will complicate things a
bit. In the previous real world example, we packaged the web server with the AMI to
lock down versions and made start up times a bit faster, but in this example, we will
skip that step and use the user data to install the web server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[161]

However, we will separate the web pages from the instance, so that small changes
can be propagated with very little effort. To do this, we will store the HTML in an S3
bucket and have the user-data grab it. This way, if the HTML file needs to change,
we can do that without needing to modify downstream services or configuration
items.

There are a few prerequisite steps to achieve this. I will create an Amazon S3 bucket
named 1ce8b98d-8735-47ff-a9dc-7f4b57820a74. Remember that buckets need to
remain unique, so you need to create a bucket that does not exist. Do this through
the S3 console. Once complete, create a file named index.php with the following
contents and upload it into the bucket we just created:

<?php
 echo "test from PHP via userdata!";
?>

Now that the file is there, we need to make sure that the instance has access to it. We
will do this through an Identity and Access Management (IAM) profile. We will not
go into a whole lot of detail on how IAM works in general, but in order to access an
S3 bucket, either the bucket should have a policy to allow certain objects to access it,
or those objects should have policies that allow them to access the bucket. We will do
the latter.

More information on AWS IAM roles and profiles can be found on the
documentation page at http://aws.amazon.com/iam/.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[162]

Browse to the IAM Dashboard, and then select Roles.

From the Roles section, select Create New Role.

In the Set Role Name dialog, name it whatever you choose in the Role Name text
box. For this example, I will name it testRole.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[163]

Next, from the Select Role Type window, we will click Select next to Amazon EC2
under AWS Service Roles. We do this because we want an EC2 instance to access an
AWS service, or S3.

We have many options to choose from in the Set Permissions window, and the
choice is up to the user, dependent on what is being achieved. Sometimes, it is best to
select a pre-configured template from Select Policy Template. However, it may also
be relevant to generate a policy, as that gives some validation and might be helpful
when starting out.

I will provide the policy, so we will select Custom Policy. Click the newly visible
Select button.

If you encounter a new dropdown for permissions, select click here underneath
Inline Policies section.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[164]

In the new Set Permissions pane, enter 1ce8b98d-8735-47ff-a9dc-7f4b57820a74_
GodMode for Policy Name. Paste the following JSON snippet into the Policy
Document section and click Next Step.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BucketList",
 "Effect": "Allow",
 "Action": [
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::1ce8b98d-8735-47ff-a9dc-7f4b57820a74"
]
 },
 {
 "Sid": "BucketAll",
 "Effect": "Allow",
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::1ce8b98d-8735-47ff-a9dc-7f4b57820a74/*"
]
 }
]
}

A quick dissection of the above snippet shows that if this policy is applied, it will
have the ability to list the bucket we created and also have full access to anything
inside of the bucket.

In the Review section, click Create Role.

We now have a bucket that contains our PHP file, and a policy that will allow us
to access it. We will now launch an instance from the AWS Linux AMI as we have
many times before. However, during the creation steps from the EC2 console, please
ensure that you apply our new testRole IAM role to the instance as well as paste
this into the User data section:

#!/bin/sh
yum groupinstall -y "Web Server" "PHP Support"
aws s3 cp s3://1ce8b98d-8735-47ff-a9dc-7f4b57820a74/index.php /var/
www/html/index.php
service httpd start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

Once the instance has finished launching, and if all steps were carefully followed,
then we will be able to access the instance from a web browser and see that the PHP
script is usable.

With this pattern, we have succeeded in separating a piece from the instance itself,
so that any future changes to the configuration (or in this case the PHP file) does not
require any intervention to services or objects downstream. We could even go so far
as to create a timer that continuously updates the /var/www/html directory with the
contents of the bucket. In a more extreme case, we could separate everything entirely
and have the user data pull its entire configuration set up from S3 in the form of a
bash file. If we went that route, we could separate the user data altogether and make
bigger changes to the system through S3 configuration. The beauty of this pattern is
that it opens up countless areas for improvement and unique solutions.

Cloud dependency injection pattern
One benefit to the previous bootstrap pattern was that we were able to separate
small configurations of the instance at start-up. This allowed us to alleviate some
maintenance headaches, such as modifying the web page content on-the-fly. Imagine
that the application consists of multiple web servers or even servers with entirely
different purposes. For example, the user data we provided for the web server is not
relevant to a database instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[166]

To take this further, we could separate it even further and have a common set
of user data across all instances. This user data could go to S3 and get the actual
configuration script it needs, whether that is to set it up as a web server or a database
server, and run that. To do this, we would need metadata at the start up level to
decide what user data to use.

To resolve this, we will make use of the tagging system that AWS provides for nearly
all of its services, including EC2 instances. Tags are quite common on instances
to provide the ability to see what its purpose is, but it can be utilized much more
effectively by the instance itself. In this example, we will create a concept of a role
to an instance. The user data will be very generic so that it might never need to be
updated, as its only purpose will be to query its tag information, decide what script
to retrieve from S3, and run it.

More information on tagging AWS resources can be found on
the documentation page at http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/Using_Tags.html.

However, there is a prerequisite step. By default, AWS does not allow instances to
query their metadata, so we must modify the IAM role we created in the previous
pattern to allow this. From IAM Dashboard, select Roles and select the testRole
we created. We will create a new policy via the Create Role Policy button.

Select Custom Policy from the Set Permissions window and click the Select button.
Enter describe-tags into the Policy Name text box and paste the following JSON
into the Policy Document area:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BucketList",
 "Effect": "Allow",
 "Action": "ec2:DescribeTags",
 "Resource": "*"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[167]

 }
]
}

Once the IAM policy has been created, we are ready to move our original user
data into S3. From the S3 dashboard, browse to the 1ce8b98d-8735-47ff-a9dc-
7f4b57820a74 bucket we created. Upload the following snippet to a new file named
webserver.sh:

#!/bin/sh
yum groupinstall -y "Web Server" "PHP Support"
export AWS_DEFAULT_REGION=us-east-1
aws s3 cp s3://1ce8b98d-8735-47ff-a9dc-7f4b57820a74/index.php /var/
www/html/index.php
service httpd start

It is important to note that creating and uploading bash files requires
them to have valid Unix newlines. If you are using a windows computer
or any text editor that saves using any other newline scheme, such as the
Windows default CRLF, there will be many unpleasant side effects. Please
ensure that if this is the case, your editor saves using Unix line endings.

You may notice that it is the user data we used in the previous example.

We are now ready to launch our instance from the EC2 console. During the creation,
ensure that you apply testRole to the instance and paste the following snippet of
code into the user data section:

#!/bin/bash
function get_tag {
 instance_id=$(curl --silent http://169.254.169.254/latest/meta-data/
instance-id)
 tag=$(aws ec2 describe-tags \
 --filters "Name=resource-type,Values=instance" \
 "Name=resource-id,Values=${instance_id}" \
 "Name=key,Values=$1" \
 | grep Value | awk '{print $2}' | sed 's/"\|,//g')

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[168]

}

echo $'#!/bin/sh\nexport AWS_DEFAULT_REGION=us-east-1\n' > /etc/
profile.d/aws.sh

. /etc/profile.d/aws.sh

get_tag 'Role'
ROLE=$tag
export AWS_DEFAULT_REGION=us-east-1
aws s3 cp s3://1ce8b98d-8735-47ff-a9dc-7f4b57820a74/${ROLE}.sh /tmp/
userdata.sh
sh /tmp/userdata.sh >/var/log/custom-userdata.sh 2>&1

Finally, make sure that you create a tag Role with the value webserver to make this
process work.

Finish launching this instance and within a few moments it will be accessible just as
in the previous example:

We have now decoupled the user data entirely from our instance. This allows for
some very dynamic solutions to common configuration issues and allows you
to apply common user data to every Linux instance. This completes the Cloud
dependency injection pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

Stack deployment pattern
It is quite common to bring up multiple instances at once, either for testing how a
system behaves as a whole or even just to reduce errors in the creation process. A
new movement in the DevOps community is to treat the infrastructure itself as code.
This allows the operations team to view differences between environments, see the
current state, and even see what changes will affect what pieces of the environment.

AWS provides this ability through their CloudFormation service. CloudFormation
allows an authorized user to deploy almost any AWS object and service, either at
once or through tiered set ups using JSON templates. These templates can have input
parameters, making them very generic, as well as defining dynamic resources, and
producing outputs. These outputs can then be used either to give information to the
user or as inputs to another CloudFormation template.

More information about CloudFormation can be found on
their documentation page at https://aws.amazon.com/
cloudformation/.

In this example, we will use a CloudFormation template to spin up a database
server with some sample data in it, as well as a front-end web instance that uses
the database server. This will be an all-in-one process that requires very little
intervention to show a very limited example of how powerful the CloudFormation
service is.

There are, however, a few things to be noted. The template itself is quite large, so
we will only be looking at relevant snippets of it to move through the example. The
full JSON is provided along with the book. That JSON also may not be relevant to a
default AWS environment as it uses a VPC and only contains internal IPs. Though
it may not be usable as-is to the reader, it can be used as a template of sorts to try
to understand how to tie multiple instances together.

First we will break down a few relevant parts of the JSON we will upload. The
general layout of the CloudFormation template that we will use resembles:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Full stack template example",
 "Parameters": {
 },
 "Resources": {
 },
 "Outputs": {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[170]

The most important parts of this outline are Parameters, Resources, and Outputs.
Within the template, nearly anywhere, you can reference variables as values, arrays,
or hashes. This is good when you wish to either remove duplication or want the
template to be a bit more generic.

In the Parameters section, we will define a few variables such as the IAM role to
use, the base AMI to use, what subnet to put the instances under, and so on. With
parameters, you may either use a default value, allow the value to be specified
during the template upload, or use a combination of both. A parameter with a
default value might resemble:

"Parameters": {
 "AWSAMI": {
 "Default": "ami-146e2a7c",
 "Type": "String",
 "Description": "The AMI ID for the AWS Linux instance."
 }
}

In the Resources section, we can define nearly any resource as long as it is valid
as per CloudFormations' internal validation scheme, which will check for circular
dependencies among resources and valid JSON syntax, along with many other
checks. You can reference other resources from a resource via a Fn:GetAttr call,
or from parameters via a Ref lookup. There are quite a few functions provided to
you to use in CloudFormation, but these are the ones you will find in the template
provided with the book. A resource might resemble:

"WebInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "ImageId": { "Ref": "AWSAMI" },
 "NetworkInterfaces": [
 {
 "GroupSet": [{
 "Ref": "FirstSecurityGroup"
 }],
 "AssociatePublicIpAddress": "false",
 "SubnetId": {
 "Ref": "SubnetId"
 }
 }
],
 "KeyName": { "Ref": "KeyName" },
 "InstanceType": "t2.micro"
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

Lastly, in the Outputs section, we would output anything relevant to a service or
the end user, such as DNS entries of instances, load balancers created, or even the
instance-ids of the instances. The possibilities are endless and depend on the setup.
For example, if you wish to create two instances, one of which has to be completely
finished before the next one is created, it would be best to have a CloudFormation
template which creates the first instance and outputs the information needed by
another template for its creation. With this stacking method, you can create complex
systems with creation dependencies met. An example of an outputs section might
resemble:

 "Outputs": {
 "WebServerELB": {
 "Description": "The A record of the ELB for the web instance.",
 "Value": {
 "Fn::GetAtt": ["WebServerELB", "DNSName"]
 }
 }
 }

With that short description in mind, let's get started. From the CloudFormation
dashboard, select Create Stack.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[172]

From the Select Template window, create a name for our stack test-Stack, upload
the template included with the book, and select Next.

Since our template has parameters, you will come to a screen Specify Parameters.
Specify any parameters relevant to your environment and select Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

There are no changes to be made from the Options page so go ahead and click Next.
From here we can finish the creation by clicking Create from the Review page.
The creation will now begin and will take some time to complete. You can view
its progress from the CloudFormation dashboard.

Once the stack is finished, Status will change from CREATE_IN_PROGRESS to
CREATE_COMPLETE.

From here, we can verify that everything works as expected by clicking test-Stack
from the list and selecting the Outputs tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[174]

To do the final verification, copy Value for Web server and browse to that via
a web browser:

We have now completely deployed a stack that consists of a database, load balancer,
and web frontend with very little effort. This process could be streamlined using the
APIs provided via AWS as well. We can also destroy all of the resources that were
created, by simply clicking Delete Stack from the CloudFormation console. This
completes the stack deployment pattern.

Monitoring integration pattern
One of the many great things about the AWS ecosystem is the amount of tooling
at your disposal. A very large portion of work for any operations team is the
monitoring of the systems' health. These checks could be scratch-level checks such
as CPU usage, RAM information, and disk information. However, monitoring
applications is not an easy task.

When it comes to knowing whether or not a system is actually performing, it is
more than just knowing if the hardware is fine: it's about knowing a slew of other
information that changes based on the perspective of the operations team as well
as the architecture of the application itself.

If it is a Java application, is the JVM configured and running as expected? If it's a
PHP application, does the system have enough memory allocated to the engine?
There are some questions that are fuzzy in nature. For example, if it's a database,
are there any queries that are taking 'too long'?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[175]

The good thing is that AWS has created the CloudWatch service to answer some
of these questions and provide the ability to answer the others. We have discussed
CloudWatch in some detail in previous patterns, but the point I am trying to drive
home is that this service is likely not enough for most teams. By default, CloudWatch
only records information for two weeks. For most teams and applications, this might
be completely satisfactory, but for some it may not be.

To see trends over time, two weeks may not be enough time to scan these metrics
and come up with solid patterns. In some cases, it may be enough to archive
this information.

Many well written pieces of software are available to solve this problem, such as
Nagios, Zabbix, Cacti, and others. There is no right answer, so this pattern only
attempts to drive home the idea, not the execution.

A lot can be gained by integrating these metrics, application or system logs, or as
much information as is possible, into a central repository. They could be retained
for contractual reasons, security audits, pattern observations, deep health checks;
the possibilities are endless. A lot of care should be taken when choosing the right
central store as it is usually difficult, generally expensive, and time consuming to
reverse this process and move it from one repository to another.

Web storage archive pattern
The next pattern will aim at a smaller subset of archival as compared to the previous
monitoring integration pattern. While the previous pattern was a more theoretical
approach to the larger aggregation and archival schema, sometimes it is relevant to
only archive certain files. One choice might be to dump the database to the filesystem.
This may not be the best choice for all use cases but it is still a common approach.

A much more common practice is to rotate files, such as logs, out of the server and
into a permanent store as they grow over time. There are plenty of ways to do this,
such as remote syslog, or some log services such as Loggly or Logstash. It is such
a common practice that there are literally hundreds of third-party solutions
to choose from.

To demonstrate this, we will use logrotate which is included in nearly every
major Linux distribution. Logrotate will handle the file rotation, compression, and
synchronization with Amazon S3. The configuration also includes timing, naming
scheme, as well as many other small tweaks for the rotation itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[176]

For our configuration, we will make use of a postrotate directive, which will allow
us to sync the log directory to our previously created 1ce8b98d-8735-47ff-a9dc-
7f4b57820a74 bucket.

First, launch an AWS instance from the AWS Linux AMI as we have many times
from the EC2 console. Note that since we are going to sync our logs into S3, we must
use IAM role testRole that we created in the previous patterns. Once it is ready,
SSH into it.

Create a file /etc/logrotate.d/myapp with the contents:

compress
compresscmd /bin/gzip
compressoptions -9
compressext .gz

dateext
dateformat -%Y-%m-%d-%s

rotate 2
nomail
missingok
size 1k

/var/log/test/*.log {
sharedscripts
postrotate
aws s3 sync /var/log/test/ s3://1ce8b98d-8735-47ff-a9dc-7f4b57820a74/
--exclude "*" --include "*.gz"
endscript
}
EOF

Before we go any further, let us break down the configuration file a bit.

The first section, as shown in the following code, defines the compression. We will
use the gzip utility on the file and give it some compression metadata.

compress

compresscmd /bin/gzip

compressoptions -9

compressext .gz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[177]

The next section defines the naming and rotation scheme. We will give it a naming
scheme that is time stamped to make it readable and sortable automatically. We will
also specify that it is ok if there are no files to compress, as well as set the minimum
size to rotate of 1K (1 kilobyte). Lastly, we will set it to rotate 2, or keep only the
two latest compressed files.

dateext

dateformat -%Y-%m-%d-%s

rotate 2

missingok

size 1k

The last section is the most important part and actually defines our rotation process.
We need to tell logrotate where the logs live and what their file extension is, in this
case .log. With the sharedscripts directive, we are telling logrotate to only run
the postrotate processor once, even if multiple files were rotated. Lastly, we have
given a postrotate block that is the S3 CLI command, to sync the files with S3. In
the current CLI usage, however, in order to specify only a certain file type to sync
(.gz), we must first exclude all files. This prevents us from syncing the log file itself,
or the uncompressed files that are in the compression process.

/var/log/test/*.log {

sharedscripts

postrotate

aws s3 sync /var/log/test/ s3://1ce8b98d-8735-47ff-a9dc-7f4b57820a74/
--exclude "*" --include "*.gz"

endscript

}

Now that the configuration file exists, we will create a CRON (or timer) entry that
runs logrotate every minute. Modify the /etc/crontab file and add the following
line to the bottom:

*/1 * * * * root logrotate --state /var/run/log_rotate.state /etc/
logrotate.d/myapp >>/var/log/logrotate 2>&1

Lastly, let's create a log file and watch it get rotated. Run the following commands to
do this. Please note that these commands, by virtue of the sleep commands, will take
around five minutes to complete:

mkdir /var/log/test

for i in {1..4}; do for j in {1..100}; do uuidgen >>/var/log/test/stuff.
log; done; sleep 75; done

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[178]

Once complete, we can verify that only two compressed files exist in our /var/log/
test directory:

[ec2-user@ip-10-203-10-109 ~]$ sudo ls -alh /var/log/test

total 16K

drwxr-xr-x 2 root root 4.0K Feb 13 03:52 .

drwxr-xr-x 6 root root 4.0K Feb 13 03:48 ..

-rw-r--r-- 1 root root 2.1K Feb 13 03:51 stuff.log-2015-02-13-1423799461.
gz

-rw-r--r-- 1 root root 2.1K Feb 13 03:52 stuff.log-2015-02-13-1423799521.
gz

But more importantly, let us verify that all the other logs have been synchronized to
our S3 bucket:

This concludes the web storage archive pattern.

Weighted transition pattern
The previous patterns, up until this point, either help to mitigate encountered
problems or give unique solutions to possible problems. We have not discussed
a lot of patterns that help to test our infrastructure.

Perhaps our system consists of a web server and a database server, as is often the
case. Upgrading these can be done incrementally with zero downtime, as we've
shown in previous patterns, but we have only discussed ways to do a full upgrade.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

Let us suppose that some code changes are pending deployment on the web instance
that requires a migration on the database instance. This is a hefty change that might
cause a lot of headaches if it is not tested thoroughly before being released into a
production environment. While testing it in a staging system is quite common and is
a great way to uncover issues, both from usage and from a deployment standpoint, it
may not catch everything.

The weighted transition pattern is one of the many patterns that exist for this
reason. In this pattern, the new infrastructure is deployed alongside the previous
infrastructure, so that both the old instances as well as the new instances are running
side by side. From here we use a DNS weighting of which we set the Route53 entry
for our new instance to receive a low portion of the traffic.

Combining this pattern with something similar to the previous monitoring
integration pattern will allow the operations team to see if the new system is
performing as expected. A set up might resemble:

For this pattern, we will not cover the instances themselves but will instead cover
how to set up weighted DNS entries in Route53, and prove that a small amount of
traffic would resolve to the new set of instances instead of the old.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[180]

It should be noted that if this set up was implemented as-is, then, post deployment,
there would be slight data discrepancies in the new instance. Suppose that this set
up is left in effect for a long time, or a short time with a lot of traffic. At some point,
the databases will diverge in terms of data and might result in some unpleasant
side effects to the end users. Traditional ways to resolve this would be to have the
new database replicate from the old database, with triggers in place to allow the old
unmigrated data to be stored. There is no right answer to this as it depends on the
infrastructure at hand, but if the application depends on the state of the data, there
might be many issues associated with following this pattern as-is. The fact is, this
pattern is designed to test the system and might require a multitude of additional
changes if it is to become a deployment pattern.

First browse to the Route53 Dashboard in AWS. From here, I will have to assume
that a hosted zone already exists for your account, as the process of creating one
has a lot of dependencies not relevant to the pattern. Also, if the environment is not
already properly configured with a hosted zone, there would be no way to test it.

From the Route53 Dashboard, click Hosted Zones.

From the Hosted Zones console, select any hosted zone you control and click Go to
Record Sets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

From here, we will create two new A records. Click Create Record Set.

We will now create the record set. Set the values as shown in the following screen
shot, being sure to change the Routing Policy value in the drop down to Weighted,
and finish the creation by selecting Create.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[182]

Repeat the process, one more time, by creating an A record for a different Value and
a higher Weight.

What we have done at this point is create multiple A records that Route53 will
alternate by round robin weighting. The record for 10.203.10.50 has a lower
weight of 10 while the other record of 10.203.10.60 has a higher weight of 100. If
we were to try to resolve the record test.myexample.com multiple times, we would
resolve it to the higher weight IP address more often. So let us prove this. Create a
file with the following contents from any computer that can run bash such as Linux,
Mac OS X, or even Cygwin for Windows:

#!/bin/bash
low_weight=0
high_weight=0

for i in {1..50}; do
 result=$(dig test.myexample.com +short)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[183]

 [["${result}" == "10.203.10.50"]] && low_weight=$[$low_weight +1]
|| high_weight=$[$high_weight +1]
done

echo "low weight: ${low_weight}"
echo "high weight: ${high_weight}"
Running that script yields:
low weight: 6
high weight: 44

This proves that Route53 routed our traffic 44 times out of 50 to the instance with
the higher weight. This means that 12% of our traffic would have gone to the new
instance if it were configured correctly. This concludes the weighted transition
pattern.

Hybrid backup pattern
Previously, we have covered a few patterns that discuss how to back up using
Amazon provided services, but those patterns assumed that all assets were in
Amazon. In real-world situations, it is very rare that all of a team's assets are
in a single store such as Amazon.

These transitional and hybrid data centre setups are quite common, but a lot of
management headaches come with trying to secure backups on-site. A solution to
this that helps to ease the transition and even to ease some backup issues such as
continuity and redundancy, is to use a hybrid backup pattern.

This pattern will not be covered in-depth as it is impossible to cover all the edge
cases for types of backups as well as ways to ship the data into AWS. One of the
easiest ways to put backups into S3 is by using some of the previous patterns in
which we copied data to S3, as that access is transparent. However, S3 is not the
only solution. Amazon Glacier is a bit cheaper but is considered cold storage.

Uploading and downloading from S3 is near to real-time, excluding some specified
time required to replicate the data. However, Glacier is not real-time. Uploading and
downloading orders of magnitude from the Glacier service might take longer than
S3, so it should be noted that the choice depends on how readily available the data
needs to be.

More information on the Glacier service can be found on the
documentation page at http://aws.amazon.com/glacier/.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Operation and Maintenance

[184]

Summary
In this chapter, we elaborated on previous patterns, such as those in Chapter 2,
Basic Patterns, to come up with some practical and theoretical solutions to issues
and deployment concerns. In the bootstrap pattern, we discussed how to separate
the actual data from the user data of the instance, so that small tweaks to our web
application could be made quickly and with few downstream effects. We then moved
to the Cloud dependency injection pattern in which we showed how to separate the
user data completely from the instance using information from the tags provided via
the API, then injecting them at boot-time. Next, we covered the stack deployment
pattern, in which we covered in some detail how to launch an entire stack, or in our
case a web application and a database, in a single transaction. This allowed us to
quickly deploy with little room for error. We next covered the monitoring integration
pattern, in which we discussed some of the issues with the CloudWatch service, and
how we can use third party software to create a central store for metrics and other
information that might be lost over time. Continuing on this concept, we covered the
web storage archive pattern and showed how to use the Linux logrotate utility to
move logs into S3, saving disk space and future headaches caused by missing logs.
Next, we touched on the theoretical concept of using Route53 to allow a small amount
of traffic to an alternate stack of software, so that we might monitor how an upgrade
would affect the overall system. Finally, in the hybrid backup pattern, we discussed
how one might use Amazon services to allow on-site machines to back up outside of
their data centre, possibly saving money and time.

In the next chapter, we will continue on the operational path and discuss patterns
for networking.

www.it-ebooks.info

http://www.it-ebooks.info/

[185]

Patterns for Networking
Many of the patterns, or arguably almost all, discussed in this book cover patterns
for the virtual machines themselves: from ensuring that data exists across machines
to ensuring that there are no single points of failure.

In the previous chapter, we covered a bit more from the infrastructure side of
moving to the Cloud such as integrating logs in the monitoring integration pattern
to discussing how one might use AWS to host backups from an on-premises set
of machines. Continuing on this path, we will move much more heavily into
infrastructure theory in this chapter.

The patterns we will discuss, in order, are:

•	 OnDemand NAT pattern: This allows the entire subnets of machines to have
internet access as-needed.

•	 Management network pattern: This uses multiple network adapters to route
specific traffic.

•	 Functional firewall pattern: This uses firewall rules for individual machines
by a specific functionality.

•	 Operational firewall pattern: This groups firewall rules for specific services
or organizations.

•	 Web application firewall pattern: This uses application-specific firewalls
to safeguard against behavior.

•	 Multiple load-balancer pattern: This uses load balancers to terminate outside
connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Networking

[186]

OnDemand NAT pattern
It should be noted that the issue of security is not the topic of this book. We will
not discuss how to secure the systems overall, but we will touch lightly on some
concerns and how it is possible to use Amazon-provided services or configurations
to start the movement into that world.

With that said we will use the following example: suppose the instances we wish to
bring up do not have internet access but still need to talk to other instances. This could
be for security—as it prevents outside access to our instances and adds a layer of
hardening—or for simplicity. This is very relevant in the microservices architecture
if it can be architected in such a way that outside connectivity is not needed.

To do this, we can use a Network Address Translation (NAT) instance in our
environment to our advantage. We can set up our normal instances to send their
non-local traffic to this NAT instance. By doing this, we can effectively turn on and
off access to the outside internet by simply disabling the interface when needed or
even shutting off the entire instance. The latter might be preferred as it saves on
billing costs since instances that are not active accrue no charges.

If maintenance on our instances is needed, such as security or package updates,
we can simply re-enable the interface or turn on the instance. This will allow us
to maintain a set of systems that cannot be penetrated by normal means from the
outside world. In theory, the only way these instances could be compromised is if
they were able to control a machine within the same subnet or had access to them
through a VPN connection.

An example of this type of setup can be seen as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[187]

Of course, as with all patterns, there are some downsides to consider. Firstly, this
operates on the assumption that the instances can work without access to the
internet, which seems to be a rare condition in most machines. The bigger downside,
however, is that with this pattern there is no way to use AWS-provided services such
as S3 while the interface or instance is down. Traffic from VPC into S3 traverses the
public domain. This is also true for many other services and configurations such as
elastic load balancers. Take caution when implementing this pattern.

Management network pattern
Continuing from the previous pattern of managing the network traffic by way of
routing, we will move to managing the traffic through distinct interfaces. As with
physical machines it is possible to have multiple network interfaces.

In the previous pattern, the machine relied on a single interface for all traffic in and
out. We might extend on this instead of having two interfaces: one to be responsible
for all the traffic to and from the outside internet and the other would be responsible
for the traffic to an on-site data center. This alternate network traffic is sometimes
referred to as a backnet or management network.

By creating our interfaces in this fashion there is a clear distinction of responsibilities
and separation of concerns. Also, this makes it much easier to apply AWS-provided
firewall configurations or Security Groups. Security Groups are provided as a
first-class AWS configuration that acts as firewall rules to other AWS entities such
as EC2 instances. Security Groups can be stand-alone rules or may be stacked.

More information for Security Groups can be found on the AWS
documentation page available at http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-network-security.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Networking

[188]

The real benefit of Security Groups to this pattern is that they are tied directly to the
network interfaces themselves. By having multiple interfaces, we can easily manage
generic firewall rules for the management network and have a very specific and open
rule for the interface that faces the internet. A simple visual representation can be
found in the following diagram:

A big benefit of this pattern is that it allows you to migrate some infrastructure to
the Cloud in a way that lets it operate in tandem with alternate services provided by
the company. This is a good way to shift to the Cloud without having to move all the
infrastructure in one single pass. It also sets the stage for a hybrid infrastructure so
that companies can use their existing infrastructure with little interruption.

A note to be made, however, is that since the traffic travels over
a VPN connection from the VPC in the preceding diagram, the
cost might be more as all the traffic that is not going out to the
internet travels over the secure line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[189]

Functional firewall pattern
A lot of security concerns are not from the software themselves, but from the
configuration surrounding the infrastructure. For example, consider a setup that has
dozens or hundreds of instances, each with their own internal firewall configurations.
Without the use of the configuration management software such as Puppet or Chef
or a very fine process regarding this configuration, each instance may end up with a
slightly different set of rules from the next.

Add to this example that the infrastructure itself may have similar configuration
such as the AWS-provided Security Groups. With these many instances, it could get
out of control very quickly if care is not taken from the beginning or is iterated over
repeatedly. Some groups may conflict with others, cause gaps in protection, or just
not work as expected. What started as a good process might evolve into a spider
web of headaches.

One benefit of Security Groups is their flexibility: they can be stacked on top of each
other, reference other Security Groups, and be granular or broad in scope. In the
functional firewall pattern we will demonstrate the benefit of grouping Security
Groups and referencing other Security Groups to create an easy-to-manage and
simple-to-understand setup.

Consider the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Networking

[190]

In this figure, we have defined three entirely different applications, creatively
named Application 1, Application 2, and Application 3. All of these are web server
applications that have a database and possible cache server such as MemCached or
Redis. If we follow the original example, we might end up with as many as seven
firewall configurations (one per instance).

A change to one will not affect the others, which allows for the possibility of an
error if this change is needed in all similar applications such as changing the default
database port. Instead, we have defined only four Security Groups:

•	 sg-1: This is responsible for allowing HTTPS (port 443) from any source such
as internet users. It would also allow other instances in the AWS account to
talk to it.

•	 sg-2: This is responsible for default HTTP traffic (port 80) from any source
similar to sg-1.

•	 sg-3: This is responsible for default database traffic (MySQL default TCP port
3306) from anything in the sg-1 or sg-2 Security Groups. These will not allow
traffic from external sources such as internet users or even anything in the
AWS account not mentioned in the Security Groups.

•	 sg-4: This is responsible for default cache server traffic (Redis default port
6379 and MemCached default port 11211) from anything in the sg-1 or sg-2
Security Groups similar to sg-3.

This configuration is very easy to read and extend. From a readability standpoint, it
means that if we add any new applications or even scale out any current instances,
we can re-apply the Security Groups. This also applies to services such as AWS
elastic load balancers, which may have Security Groups as well. With this setup, we
can add any number of similar applications (similar being the key word) and will not
need to create more configuration.

A very useful feature as mentioned before is the ability to stack Security Groups.
Application 1 uses SSL while Application 2 does not so we created a single security
group for this. Application 3, however, allows both HTTPS and HTTP, but we did
not create a new security group for it as we already had this behavior defined in sg-1
and sg-2. Instead, we applied both Security Groups to this instance. This follows
a widely followed mantra of Single Responsibility Principle (SRP) in which our
Security Groups are responsible for one thing in which they will do it well.

By following this principle in our configuration, we can easily extend this out
further without compromising the integrity of our policies and adding artifacts or
edge cases, such as accidentally allowing internet users to create a connection to the
database or cache instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[191]

Operational firewall pattern
Continuing from the previous example, it may not be enough to just group your
servers by function. The previous example would work great for general web pages
that are accessible to the public, but would not work well if the applications needed
to be controlled are on a per-client or per-system basis.

Refer to the following diagram:

This diagram looks very similar to the previous one, except we have simplified it
down to a single application with separate front-end instances. The database instance
still contains a security group that allows anything in the web interfaces (sg-1 and
sg-2) while the web interfaces are bound to an organization (the client).

In the previous functional firewall pattern, these web interfaces would have the same
Security Group; however, by binding them to an organization (such as a consuming
system or client), we can easily change what is relevant to that organization without
affecting the others. This might include managing a client-specific certificate, the
source IP, and so on. It also very easily allows a system administrator to know
which instances are for what purposes and who it affects.

While this does have some benefits to security, the biggest benefit to these is the
ability to reduce errors or add unnecessary side effects to the system in an area
that might be hard to troubleshoot.

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Networking

[192]

Web application firewall pattern
The next pattern is not specific to the Cloud, but is important enough to mention.
When securing a system it is one thing to prevent or limit access, but that is only a
small scope of a much broader assessment. Suppose your database does not allow
connection from anything other than the web instance that is connected to it.

While this means that no outside system can directly access the instance, it does
not mean that they cannot compromise it and change that assertion. A traditional
firewall or even Security Groups will never prevent behavior from individuals such
as SQL injection and exploiting bugs in software. While the system administrators
had a firewall rule in place of the database, someone might be able to modify that.

That is where intrusion detection systems and web application firewalls come into
play. We will not discuss intrusion detection systems, but since we are on the topic of
firewalls, we will touch lightly on what they are and how they can be implemented
in a Cloud infrastructure. A web application firewall can come in many forms: from
a SaaS appliance or an installable package to just a set of configuration files.

A traditional firewall is stateful: it either allows or denies connections. An
application firewall, however, inspects the behavior of the application. Let's refer
to our previous examples in which our system consisted of a web instance running
Apache and a database instance that it could connect to. By general use, this is fine,
but if we were to base a system on the simple code snippets that were provided in
previous chapters, we could very likely be compromised very quickly.

For example, in the snippets, our SQL queries from Chapter 6, Patterns for Uploading
Data were never sanitized, had no error handling, and could likely cause one or both
of the systems to be compromised from a malicious user via SQL injection or many
other common penetration methods. The firewall would never prevent it as its job is
simply to allow or deny the user access. However, using a web application firewall
such as ModSecurity would help to find this behavior and prevent it or at the very
least detect it.

More information on ModSecurity can be found at
https://www.modsecurity.org/.

However, thinking about this from a Cloud perspective, things get a bit difficult.
For example, software that adheres to PCI compliance (dealing with credit card
information) has strict rules for what it means to be in compliance and how to deal
with data breaches. While there are free application firewalls that could be mixed
and matched to meet these requirements, the company may opt for a non-free
version, which is the more common case.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[193]

The licensing for this software most likely is on a per-instance basis and thinking
back to our patterns that is the opposite of what we are usually trying to achieve
with a dynamic Cloud infrastructure. The ability to scale out as needed or failover as
soon as possible might not work with a set licensing requirement. In times like these,
the system might be architected in such a way that the firewall does not live side by
side with the instances being protected.

By moving the application firewall out of the instances, we are able to scale out the
instances themselves with no concern to licensing, but we are also able to know how
many licenses are in use or are required ahead of time. For a visual representation,
refer to the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Patterns for Networking

[194]

In this example, what we have done is carefully defined how many web application
firewall instances we have at any given time, making licensing easy (although at the
cost of not being able to autoscale). We are still able to scale out the web instances
without worrying about the firewalls, although registering with the proxy would be
the next step to take care of. Lastly, if we look carefully, we have tied in our original
functional firewall pattern in that there are only three Security Groups to manage.

Multiple load balancer pattern
The last firewall pattern we will discuss will be an elaboration on the operational
firewall pattern. If we look back at this pattern, we will see that we not only grouped
the instances by function, but also by what outside operation or customer it was
relevant to. This might work if we had client-specific web pages, but that is rarely
the case when it comes to an application. It might also be noted that if we terminate
SSL somewhere else, upstream it saves some computation time (arguably low).
AWS-provided load balancers allow us to specify the certificate information thereby
allowing us to terminate the SSL connection in an AWS service, potentially saving us
some computation cycles and configuration headaches. Refer to the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[195]

In this example, we have a single web instance that communicates over native
HTTP (port 80) and allows connections from the load balancers (which have client,
customer, or organization-specific Security Groups: sg-1 and sg-2). With this method,
we no longer have to manage multiple certificates in a single instance or even
certificate information per client in our instances at all, but operate under normal
HTTP traffic. The load balancers here will do the heavy lifting of allowing or rejecting
the traffic and deciding whether the certificate is valid.

We can now scale out our web instances through any combination of the patterns
discussed in this book and we will not even have to worry about the Security Groups
as we have only one for the web instance (sg-3). This also holds true for the database
instances since there is only one security group (sg-4) so we can scale out through
any of the previous database patterns. We can also make use of the AWS that
provides RDS databases as we can apply our Security Groups there as well.

Summary
In this chapter, we continued from Chapter 9, Patterns for Operation and Maintenance
and stayed in the realm of the underlying infrastructure: networks. In the
OnDemand NAT pattern, we discussed how to effectively turn on and off outside
connectivity so that we can prevent unwanted access except when maintenance
windows are needed. We then moved to the management network pattern in which
we discussed how to route traffic over the interfaces themselves within a virtual
machine so that we can easily distinguish outside traffic from other AWS traffic,
or even traffic from an on-premises data center. Next, we covered the functional
firewall pattern in which we showed how we can use the AWS-provided firewall
configuration (Security Groups) to group instances by their functional part in a
stack. Staying on the firewall topic, we discussed how to group virtual machines,
not only by their function in the stack, but also by who the clients are. Finishing up
the firewall discussions, we ended with web application firewalls and how we can
protect our system from the behavior of the clients and users instead of only relying
on allowing or disallowing traffic overall. The last pattern is the multiple load
balancer pattern in which we discussed how to move the certificate configuration
and firewall management for outside systems that are completely out of our hands
and into the AWS-managed elastic load balancers: saving us time and computation.

We will finish this book with the next chapter in which we talk in theory about how
to use new third-party technologies with AWS to create systems that can be recreated
as often as possible. This next chapter will also describe the current trend of blurring
the DevOps line and move developers closer to the deployment process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[197]

Throw-away Environments
Throughout this book, we covered many patterns that can be applied to scenarios,
but are flexible in many ways. They can be mixed and matched, even stacked to
create very cool setups. This is only one piece of the much larger puzzle, however,
of getting into the Cloud mindset.

My assumption for this book is that you, the reader, have already moved many
resources out into the AWS infrastructure. One thing we have not discussed is how
to continue after the migration is complete. Perhaps the application was shifted
there, and it is now running perfectly and can mend itself when problems are
encountered.

From here, though, the questions shift to a whole different set of problems and
issues. Perhaps the application consists of a web page and database. How do you
deploy it out there? Do you take an approach similar to the previous chapters
in which we hosted straight from S3? If so, how do you handle code changes
that require database changes? If we push that code directly into S3 or whatever
underlying service without staging the database changes, it could cause some
problems to the end user. Even further, what if the database migration fails or just
takes an obscene amount of time to complete in production?

The point of these questions is to hint at the overall optimization of moving the
developers closer to the final product. If the point of these chapters was to prevent
the downtime and create resilient applications, then we have missed a big section:
the underlying pieces.

Say, for instance, we have an application that is spread across two availability zones.
We have designed it to be fault-tolerant and resilient, but a disaster happens: an
entire availability zone is gone or inaccessible; or perhaps we did all of this work in
availability zones in Virginia, but a new data center is created and becomes available
much closer to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Throw-away Environments

[198]

Would the move be easy? Perhaps it is, but perhaps it's not: our examples had some
hard-coded export AWS_DEFAULT_REGION=us-east-1a in many places, which
would be simple to miss. Also, do not forget to calculate in the amount of time it
would take to bring up VPC, create subnets, enable VPN connections, and create the
gateway instance we rely on. We will touch on a few topics in this chapter:

•	 Infrastructure as a code: This puts the traditional development practices on
the hardware abstractions.

•	 Temporary development environments: This moves the developers closer to
the final servers to prevent inconsistency as early as possible.

•	 Continuous integration: This optimizes our deployment and testing practices
to get a bit more power from Cloud infrastructure.

Infrastructure as code
Many development shops have a very big mantra for quality control surrounding
code. What gets missed from the operations or DevOps teams is very similar in terms
of requiring quality control over the infrastructure. The movement lately is to be
ensured that the infrastructure is treated the same as the code itself. By putting the
same practices in place; it is easy to view, control, and replicate these environments.
For example, if security groups are modified, then it is easy to track down what
caused the change.

This enables us to do audits as well. If something were to open up ports to a server
or security group configuration, we would know fairly quickly whether it was done
by accident or through malicious intent. This also means that if our infrastructure
needed to shift to a new region or availability zone, or if the hardware underneath our
infrastructure experiences a catastrophic failure, we can recover somewhat easily.

CloudFormation
We actually have touched slightly on this topic through our stack deployment
pattern from Chapter 9, Patterns for Operation and Maintenance, using CloudFormation
templates. CloudFormation, as we stated, can manage nearly anything that exists
in AWS. This includes subnets, routing tables, DHCP option sets, and all the pieces
that can actually determine our entire infrastructure; not just the virtual machines
themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[199]

The benefit of CloudFormation to this topic is that once a template is uploaded, it
can be updated. Say, for instance, all of our security groups were created through a
template. If we needed to have a new IP address for a client or modify an existing
one, we could make that change to our template and push it through the normal peer
review channels such as code review. After all the changes are approved, it would be
applied as an update to the current template and would make the necessary changes.

Packer
HashiCorp has made quite a run at this with their software Packer. Packer is quite
different from CloudFormation from the very beginning as it is agnostic to the
provider (in this case AWS). It is written on top of components:

•	 Builders: This is a type of package to create. For this book's examples it
would be an AMI, however, it can package as many forms such as Docker
containers, DigitalOcean Droplets, and so on.

•	 Provisioners: This is the bootstrappers for configuration. This could be Shell,
Puppet, Chef, Salt, and many others.

•	 Post-processors: Optional post-processing steps that might be needed such as
compression, file upload, and so on.

Packer seems to have a much lower barrier to entry for some, although it is
pure preference. CloudFormation, while native, is very verbose in its textual
representation and lacks the ability to output to other formats or Cloud providers.

More information about Packer can be found on their
webpage at www.packer.io.

Fugue
Another choice to create infrastructure from code is Fugue. Fugue is a start-up
currently based in Washington, DC that aims at automating and controlling
infrastructure, from the hardware itself to the instances making up the stack.

The configuration files are written in YAML and are aimed directly at AWS
infrastructure. At the current state of this chapter, the company is still getting
ready to launch their initial beta.

More information about Fugue can be found on their
webpage at www.fugue.it.

www.it-ebooks.info

http://www.it-ebooks.info/

Throw-away Environments

[200]

Temporary development environments
It is very rare to encounter a stack of software that work together in perfect harmony
to a developer. Many developers have to rely on development boxes to do some
pieces of their development tasks such as database testing, using cache servers, and
so on.

There has been a lot of effort put forth to minimize this, thanks to the software
such as Vagrant. I mentioned Vagrant early on, in which we demonstrated how
to bootstrap an AWS EC2 instance from a configuration file. The real power to
it, however, is bringing the developers closer to the environment that it will be
deployed under.

For example, imagine a team that works on a Ruby on Rails application. Each
developer uses a Macintosh since it can handle Ruby natively. Many developers,
however, may use different versions of Ruby and write their code that way. During
deployment, this is not communicated and the code is shipped out onto a CentOS
box, which uses a much older version of Ruby. The code has a high likelihood of
being incompatible.

This could have been prevented in many ways before deployment using continuous
integration suites such as TeamCity, Jenkins, or even Bamboo and it would be a
nightmare to discover too late. Another common mishap is that a developer may use
third-party plugins that do not make their way to the final production server or rely
on system level calls that may not even be available.

Using something like Vagrant, we could enable our developers to work locally on
development machines that target and mimic the production environment almost
exactly. This practice has been extremely practical in my run of blurring the lines
between a developer and operations. I have personally found it extremely helpful to
allow developers to know the limitations and details of the production server. It has
allowed them to write robust code that can be modified easily from an operation's
perspective.

For example, if the developers know how AWS user data works when writing a new
system application, they can, from the very beginning, avoid pitfalls of attempting to
hardcode things that should not be hardcoded such as certificate locations, database
connection strings, configuration options, and so on. This makes the handoff to a
staging ground almost seamless.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[201]

Lastly, it makes the barrier to entry much lower for the new members of the team.
A large amount of time is spent by a developer in the first few weeks with a team
trying to get their computers or laptops prepared. Instead of requiring them to try
to memorize where the development servers are, what versions of software they
are running, how to interact with them, and so on, these configuration files explain
nearly everything at a glance.

Their first week could be much better spent by allowing them to just work by
bringing up the servers they need as they need them.

The most important benefit to take from temporary environments is the ability to test
as early as possible how a deployment or set of changes would affect the application
overall. Every time a machine is created from Vagrant, it is at the same place in terms
of configuration. If a database migration is needed, it cannot be missed as this latest
machine that was brought up does not have it. This means that we are constantly
testing our underlying pieces.

Continuous integration
The traditional continuous integration (CI) is another gray area for developers.
CI servers typically consist of a master and slave setup. The master(s) controls the
builds, or how to run the tests or commands, and the slaves execute them.

The fantastic thing about Cloud infrastructure, as we have discussed many times,
is the ability to spin up instances as needed and terminate them when we are done
with them. This gives us a very unique opportunity: ad-hoc CI slaves.

Using Cloud infrastructure we most likely should have the master running 24/7.
This prevents us from having gaps in commits. If there are no agents available, the
builds will stay in a queue of some sort. The agents, however, can be Cloud agents
and spun up as needed.

Perhaps we deploy an application that can be installed on both CentOS and Ubuntu
platforms. From the master, we could have a build configuration that uses a
pre-built AMI for both of these operating systems so that we can test and build
on each without constantly having both running.

It would be pretty wasteful on resources, for example, to have 20 agents that are not
doing anything, especially so on weekends and holidays. From an AWS perspective,
this means there are many hours that are being billed, which we are not making
use of.

www.it-ebooks.info

http://www.it-ebooks.info/

Throw-away Environments

[202]

Summary
In this final chapter, we discussed some high-level topics that are making
headlines in the DevOps movement and can heavily improve our work with AWS
infrastructure. Firstly, we talked about how to move our infrastructure into a code.
This allows us to apply things such as peer review, diffing tools, and so on against
pending changes to our infrastructure. Next, we moved to temporary development
environments and discussed how tools such as Vagrant allow us to get the final
servers much closer to the developers. This can prevent things such as software
incompatibilities, miscommunications about migrations, and a slew of other possible
errors when it is time to get our code to the consuming clients. Finally, we discussed
how we can optimize our testing and deployment to make use of the flexibility of the
Cloud and AWS. This concludes this book.

www.it-ebooks.info

http://www.it-ebooks.info/

[203]

Index
A
Amazon Linux AMI

about 11
URL 11

Amazon Machine Image (AMI) 11
Amazon Resource Name (ARN) 67
Amazon Web Services. See AWS
Auto Scaling Groups (ASG) 2
auto scaling termination policy

URL 31
AWS

about 2, 3
common problems 6
URL 3

B
Bitly

URL 76
Bootstrap pattern

about 160
process 161-165

C
cache proxy pattern 95-99
clone server pattern 80-85
Cloud

benefits 4-6
Cloud computing service models

Infrastructure as a Service (IaaS) 3
Platform as a Service (PaaS) 4
Software as a Service (SaaS) 4

Cloud dependency injection pattern
about 165
prerequisite step 166-168

CloudFormation
about 169, 198
benefits 199
URL 169

CloudFront 73
CloudWatch 9
common problems, AWS

end user experience, improving 9
log-gathering 9
monitoring 9
over-provisioning 7
redundancy 8
replication 8
underlying hardware failures 6, 7
under-provisioning 7, 8

Consul
reference link 99

content delivery networks 73-75
continuous integration (CI) 201
custom metrics

URL, for publishing 31

D
databases

database replication pattern 118-120
in-memory cache pattern 123-127
read replica pattern 121, 122
sharding write pattern 128-131

data processing
job observer pattern 149-157
priority queue pattern 142-148
queuing chain pattern 135-141

data upload patterns
direct object upload pattern 112-115

www.it-ebooks.info

http://www.it-ebooks.info/

[204]

storage index pattern 108-112
write proxy pattern 102-107

deep health check pattern
about 55
workflow 56-59

direct object upload pattern 112-115
direct storage hosting 68, 69
dynamic data, processing

cache proxy pattern 95-99
clone server pattern 80-85
Network File Sharing (NFS) pattern 85-89
state sharing pattern 90-93
URL rewriting pattern 93-95

E
ElastiCache

about 42
URL 42

Elastic Cloud Compute (EC2) 2
Elastic IP (EIP) 50
Elastic Load Balancers (ELB)

about 2
URL 48

end user experience
improving 9

F
fibonacci algorithm

URL 135
floating IP pattern

about 50
workflow 50-55

Fugue
about 199
URL 199

functional firewall pattern 189, 190

G
Galera

about 121
URL 121

Glacier
about 183
URL 183

GlusterFS
URL 86

Google URL Shortener
URL 76

H
hardware failures 6, 7
HDFS

reference link 86
high availability

deep health check pattern 55-59
floating IP pattern 50-55
multi-data center pattern 48, 49
multi-server pattern 42-48

high availability storage
about 62
workflow 62-68

hybrid backup pattern 183

I
Identity and Access Management (IAM)

about 161
URL 161

Infrastructure as a Service (IaaS) 3
infrastructure, as code

about 198
CloudFormation 198
Fugue 199
Packer 199

in-memory cache pattern 123-127
installation

Vagrant 12, 13
I/O

increasing, through software RAID 36-38

J
Java packaging standard

reference link 63
job observer pattern 149-157
JSONP

about 68
URL 68

www.it-ebooks.info

http://www.it-ebooks.info/

[205]

K
Key Value Store (KVS) 90

L
log-gathering 9
Logical Unit Number (LUN) 12
logs

monitoring 9

M
management network pattern 187, 188
MemCached

URL 90
ModSecurity

about 192
URL 192

monitoring integration pattern 174
multi-data center pattern 48, 49
multiple load balancer pattern 194, 195
multi-server pattern

about 42
workflow 42-48

MySQL Fabric
about 121, 128
URL 121

N
Network Address Translation (NAT) 186
Network File Sharing (NFS) pattern 85-89
networking

functional firewall pattern 189, 190
management network pattern 187, 188
multiple load balancer pattern 194, 195
OnDemand NAT pattern 186, 187
operational firewall pattern 191
web application firewall pattern 192-194

O
on-demand disk pattern

about 32, 33
I/O, increasing through

software RAID 36-38

volume, changing from magnetic to SSD 36
volume, resizing 34

OnDemand NAT pattern 186, 187
operational firewall pattern 191
over-provisioning 7

P
Packer

about 199
URL 199

Platform as a Service (PaaS) 4
priority queue pattern 142-148
private data delivery 70-72

Q
queuing chain pattern 135-141

R
read replica pattern 121, 122
Redis

URL 90
Redis ruby client

URL 93
redundancy 8
Relational Database Service (RDS) 2
rename distribution pattern 76
replication 8
Route53 179

S
scale out pattern

about 23
process 23-31

scale up pattern 19-22
Security Groups

about 187
reference link 187
sg-1 190
sg-2 190
sg-3 190
sg-4 190

security policies
references 62

www.it-ebooks.info

http://www.it-ebooks.info/

[206]

Service Level Agreement (SLA) 7
sharding write pattern 128-131
Shoryuken

URL 145
Simple Queue Service (SQS)

about 3, 134
URL 134

Simple Storage Service (S3) 3, 62
Single Responsibility Principle (SRP) 190
snapshot pattern 14, 15
Software as a Service (SaaS) 4
software RAID

reference link 36
used, for increasing I/O 36-38

Squid
URL 95

stack deployment pattern
about 169
example 169-174

stamp pattern 15-18
state sharing pattern 90-93
static data 61
static data, processing

content delivery networks 73-75
direct storage hosting 68, 69
high availability storage 62-68
private data delivery 70-72
rename distribution pattern 76

storage index pattern 108-112

T
tagging, AWS resources

reference link 166
temporary development environments

about 200
benefits 201

Terraform
about 6
URL 6

Time To Live (TTL) 93
Tsunami

URL 102

U
under-provisioning 7, 8
URL rewriting pattern 93-95
user-data

reference link 160
User Interface (UI) 42

V
Vagrant

about 5, 12
installing 12, 13
reference link 14
URL 5, 12

Varnish
URL 95

virtual machine disk file (VMDK) 13
Virtual Private Cloud (VPC) 2
volume

changing, from magnetic to SSD 36
resizing 34

W
web application firewall pattern 192-194
web storage archive pattern

about 175
demonstrating 175-178

weighted transition pattern
about 178, 179
setting up 179-183

write proxy pattern 102-107

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Implementing Cloud Design
Patterns for AWS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

AWS Development Essentials
ISBN: 978-1-78217-361-8 Paperback: 226 pages

Design and build flexible, highly scalable, and
cost-effective applications using Amazon
Web Services

1.	 Integrate and use AWS services in an
application.

2.	 Reduce the development time and billing
cost using the AWS billing and management
console.

3.	 This is a fast-paced tutorial that will cover
application deployment using various tools
along with best practices for working with
AWS services.

Learning AWS OpsWorks
ISBN: 978-1-78217-110-2 Paperback: 126 pages

Learn how to exploit advanced technologies to
deploy and auto-scale web stacks

1.	 Discover how a DevOps cloud management
solution can accelerate your path to delivering
highly scalable infrastructure and applications.

2.	 Learn about infrastructure automation, auto-
scaling, and distributed architecture using a
Chef-based framework.

3.	 Includes illustrations, details, and practical
examples for successful scaling in the cloud.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

VMware vCloud Director
Essentials
ISBN: 978-1-78398-652-1 Paperback: 198 pages

Build VMware vCloud-based cloud datacenters
from scratch

1.	 Learn about DHCP, NAT, and VPN services
to successfully implement a private cloud.

2.	 Configure different networks such as Direct
connect, Routed, or Isolated.

3.	 Configure and manage vCloud Director's
access control.

Getting Started with Oracle Public
Cloud
ISBN: 978-1-78217-810-1 Paperback: 96 pages

Master the core concepts of Oracle Public Cloud and
its services-Java, Database, Transition, Storage, and
Messaging

1.	 Get to grips with the core concepts of Cloud
computing and Oracle Public Cloud services.

2.	 Learn the best practices to be followed while
using Oracle Public Cloud.

3.	 This book will reveal the power of Oracle
Public Cloud and show you how you can use
this power to your advantage.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	Introduction to AWS
	Cloud computing service models
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Benefits of moving to the cloud
	Common problems encountered at AWS
	Underlying hardware failures
	Over-provisioning
	Under-provisioning
	Replication
	Redundancy
	Improving the end-user experience
	Monitoring and log-gathering

	Summary

	Chapter 2: Basic Patterns
	Introducing Vagrant
	Snapshot pattern
	Stamp pattern
	Scale up pattern
	Scale out pattern
	On-demand disk pattern
	Volume resize
	Change volume from magnetic to SSD
	Increase I/O through software RAID

	Summary

	Chapter 3: Patterns for High Availability
	Multi-server pattern
	Multi-data center pattern
	Floating IP pattern
	Deep health check pattern
	Summary

	Chapter 4: Patterns for Processing
Static Data
	High availability storage
	Direct storage hosting
	Private data delivery
	Content delivery networks
	Rename distribution pattern
	Summary

	Chapter 5: Patterns for Processing Dynamic Data
	Clone server pattern
	NFS sharing pattern
	State sharing pattern
	URL rewriting pattern
	Cache proxy pattern
	Summary

	Chapter 6: Patterns for Uploading Data
	Write proxy pattern
	Storage index pattern
	Direct object upload pattern
	Summary

	Chapter 7: Patterns for Databases
	Database replication pattern
	Read replica pattern
	In-memory cache pattern
	Sharding write pattern
	Summary

	Chapter 8: Patterns for Data Processing
	Queuing chain pattern
	Priority queue pattern
	Job observer pattern
	Summary

	Chapter 9: Patterns for Operation
and Maintenance
	Bootstrap pattern
	Cloud dependency injection pattern
	Stack deployment pattern
	Monitoring integration pattern
	Web storage archive pattern
	Weighted transition pattern
	Hybrid backup pattern
	Summary

	Chapter 10: Patterns for Networking
	OnDemand NAT pattern
	Management network pattern
	Functional firewall pattern
	Operational firewall pattern
	Web application firewall pattern
	Multiple load balancer pattern
	Summary

	Chapter 11: Throw-away Environments
	Infrastructure as code
	CloudFormation
	Packer
	Fugue

	Temporary development environments
	Continuous integration
	Summary

	Index

