

AWS Development Essentials

Design and build flexible, highly scalable,
and cost-effective applications using Amazon
Web Services

Prabhakaran Kuppusamy

Uchit Vyas

BIRMINGHAM - MUMBAI

AWS Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1191114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-361-8

www.packtpub.com

Credits

Authors
Prabhakaran Kuppusamy

Uchit Vyas

Reviewers
Joe Johnston

Robert M. Marks

Somanath Nanda

Commissioning Editor
Kunal Parikh

Acquisition Editor
Larissa Pinto

Content Development Editor
Manasi Pandire

Technical Editors
Indrajit A. Das

Shashank Desai

Copy Editors
Sarang Chari

Dipti Kapadia

Project Coordinator
Suzanne Coutinho

Proofreaders
Simran Bhogal

Ameesha Green

Amy Johnson

Jonathan Todd

Indexers
Mariammal Chettiyar

Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Authors

Prabhakaran Kuppusamy is a Hadoop ecosystem specialist and cloud
enthusiast who is currently working as a senior systems engineer and developer,
Cloud and Infrastructure Services unit, at Infosys Limited. He is passionate about
teaching and writing. He loves to play cricket during his leisure time. He joined
Education & Research at Global Education Centre, Infosys, where he trained and
evaluated thousands of freshmen in Java, Big Data, and cloud technologies. During
his tenure in the Education & Research department, he provided training to students
from Coventry University and to professionals from Costa Rica on Big Data and
cloud technologies, such as Hadoop, MapReduce, Hive, Elastic MapReduce,
Google App Engine, DynamoDB, and CloudStack.

Prabhakaran has a Bachelor of Engineering degree in Instrumentation and
Control Engineering from Anna University. After completing his degree, he
started providing workshops and training sessions on Big Data and cloud to
several engineering colleges. He is an IBM Certified Cloud Computing Architect.
He has more affinity towards private clouds and a greater working knowledge
about them. Currently, he is working on MarkLogic, Storm, and XQuery. He keeps
on trying new things, even if it burns his fingers. He loves to interact with students
and teachers, and his Twitter handle is @prabhakar28dec.

Prabhakaran has also authored DynamoDB Applied Design Patterns, Packt Publishing.

I dedicate this book to my niece, Harrsatha Sri, and my sister,
Kalaiselvi Sathishkumar. I would like to thank Sarika Ghawle,
Abhishek Kumar Sharma, and Bhupendra Bajpayi for providing
favorable conditions to write this book. Also, I would like to thank
my GEC colleagues, Krishna Prasad, Uchit Vyas, Sureesh Joseph,
and Ravindran Balachandran, for shepherding me technically and
personally. Special thanks to Kshitiz Jain, my manager and friend,
who has always been there to help me.

Uchit Vyas is an IT industry veteran, a cloud technologist at heart, and a hands-on
Lead DevOps at Clogeny Technologies for cloud automation. He is responsible for
the delivery of solutions and services as well as product development. He explores
new open source technologies and the defining architecture, roadmaps, and best
practices for enterprises. He has consulted and provided training on various open
source technologies, including cloud computing (AWS Cloud, Rackspace, Azure,
CloudStack, OpenStack, and Eucalyptus), Mule ESB, Chef, Puppet, Liferay Portal,
Alfresco ECM, and JBoss to corporations around the world.

Uchit has done his engineering in Computer Science from Gujarat University.
He was in the Education & Research Team as a senior associate at Infosys
Limited; during this time, he has worked on private clouds, cloud security,
and virtualization.

Uchit has also authored books on Mule ESB and AWS DynamoDB, and he
continuously writes books on open source technologies such as Storm, Python,
and so on.

He hosts a blog named Cloud Magic World (http://cloudbyuchit.blogspot.com),
where he posts tips and phenomena on open source technologies mostly relating
to cloud. His Twitter handle is @uchit_vyas.

I would like to thank my better half for helping me a lot in writing
this book and providing me with continuous support throughout the
period of writing this book. I would also like to thank my Infocian
colleague, Prabhakaran Kuppusamy, for his help.

About the Reviewers

Joe Johnston is the co-author of Programming Web Services with XML-RPC and Unix
Power Tools, 3rd Edition, both by O'Reilly Media. He builds cloud-hosted applications
for the human resources market.

I would like to thank my wife, Sally, and son, Angus,
for their support.

Robert M. Marks is an experienced software developer and has spent over
12 years of his career working for a variety of software companies, ranging from
large companies such as IBM to small start-ups. He is passionate about crafting
well-tested software using best practices, such as TDD, layered design, dependency
injection, and so on. He has contributed to various open source projects and is the
creator of Java Online Gaming Real-time Engine (JOGRE).

Robert is currently the Head of Engineering at Adoreboard, a unique platform that
measures how the world feels about your brand so that marketers can make better
business decisions. In his work at Adoreboard, he is a key pioneer for the development
of real-time scalable architectures using a combination of technologies, including
Enterprise Java, Spring Framework, cloud computing, and NoSQL databases such
as MongoDB, Elasticsearch, Solr, and Redis.

Somanath Nanda is a young and dynamic technical speaker, an experienced
tech-savvy professional with more than 3 years of IT experience, who is interested
in learning new, upcoming technologies and providing cutting-edge design
solutions. He started his career as an embedded engineer, and at present, he is
working at Cognizant Technology Solutions Pvt. Ltd. with the product development
team as a core team member. He has completed his BTech in Electronics and
Telecommunication Engineering from Biju Patnaik University of Technology.

He loves to read novels and watch documentaries related to God and science.
He has an interest in Big Data technologies, including Apache Spark and Apache
Hadoop. He has worked on various technologies, including Struts Framework,
Spring Framework, iBatis, and Hibernate; databases such as Oracle and MySQL;
NoSQL databases such as HBase; as well as analysis tools such as R and Microsoft
Excel. He has a comprehensive knowledge of applied statistical methodologies,
including regression analysis (univariate and multivariate linear regression,
nonlinear regression, including logistic, Poisson, and negative binomial
regressions), linear models (generalized linear model, hierarchical linear
models, including mixed effect, random effect, and fixed-effect models),
statistical data analysis, and statistical modeling.

I would like to thank my parents and my friends for their help in
making this review successful.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: An Introduction to Amazon Web Services	 5

A background of AWS and its needs	 6
The AWS Management Console	 6

One-click access to the AWS services	 7
AWS account administration	 8
AWS management using handheld devices	 8
AWS infrastructure management across the globe	 9

AWS security measures	 10
Instance isolation	 10
Isolated GovCloud	 12
CloudTrail	 12
Password	 13
Multi-Factor Authentication	 13
Access Keys (Access Key ID and Secret Access Key)	 14
The CloudFront key pairs	 15
X.509 certificates	 15
Account identifiers	 15

AWS interaction through the SDK and IDE tools	 16
The first IDE tool – the Eclipse plugin	 16
The SDK tool	 23

Summary	 23
Chapter 2: Working with AWS Storage Services	 25

AWS storage options	 26
Working with ephemeral storage	 26
Persistent storage	 30

Table of Contents

[ii]

Working with Amazon EBS	 32
Using persistent storage with EC2	 33

Working with AWS	 36
Creating the S3 bucket	 36

AWS Glacier	 42
Summary	 47

Chapter 3: Computing and Networking Services	 49
Amazon Elastic Compute Cloud	 50

Getting started with EC2 instances	 50
Root device volume of Amazon EC2	 51

Working with Amazon EC2	 51
Best practices	 52
Tools	 53

Getting started	 53
Windows instances	 54
Linux instances	 56

Amazon VPC	 58
Creating an AWS VPC	 58
Creating a private subnet	 65
Launching a database server in the private subnet	 66
Launching an OpenVPN instance	 66

Computing and networking tools and libraries	 72
Summary	 84

Chapter 4: Managed Services and the Databases	 85
Amazon DynamoDB	 86

Table operations	 86
Item operations	 91
Best practices for DynamoDB	 94

Amazon RDS	 94
Instance creation	 95
Connecting to the RDS DB instance	 100

Database tools and libraries	 104
Creating your first SDK project	 104
Java SDK operations	 107

DynamoDB local	 111
Performing DynamoDB operations using CLI	 114

The RDS command-line tool	 116
Summary	 117

Table of Contents

[iii]

Chapter 5: Deployment and Management	 119
AWS CloudFormation	 119
Alarms with Amazon CloudWatch	 123
Identity and Access Management	 128

Accessing IAM	 128
Authorization and authentication	 130

Application deployment using AWS Elastic Beanstalk	 133
Summary	 141

Chapter 6: Working with the AWS Simple Notification
Service – SNS	 143

Identifying Amazon SNS	 144
The baseline concepts of Amazon SNS	 144

The service models of Amazon SNS	 145
Usage in CloudWatch	 145
The mobile push notifications service	 146
Conjunction with the SQS queues	 146
The SMS notifications service	 146
The HTTP/HTTPS messaging service	 147

Accessing SNS using the Management Console	 147
Creating an SNS topic	 149
Adding a subscription to a topic	 151
Topic actions	 153

Publishing to the topic	 154
Topic policy actions	 156
Topic delivery policy actions	 157

The sample code and libraries of SNS	 159
Performing SNS operations using the Eclipse AWS SDK	 159
Performing SNS operations using the CLI tool	 162

Summary	 168
Chapter 7: Working with AWS SQS	 169

AWS SQS	 169
The baseline concept and object models of SQS	 170

Properties of a distributed queue	 170
The life cycle of an Amazon SQS message	 173

Code and libraries of the AWS SQS service	 174
Creating an IAM role	 180
Creating SQS tasks	 182
Dispatching work and viewing the results	 186
Monitoring the cluster	 186

Summary	 187

Table of Contents

[iv]

Chapter 8: Building an Application Using AWS	 189
An overview of an application	 189
Tool selection	 190
Creating an application	 190

Assumptions	 190
Users	 191
Signing up with EducationCloud	 192
Managing an instance request	 194
Approving an instance request	 196
Rejecting an instance request	 200
Using RDS and Elastic Beanstalk	 202
Application of the best AWS practices	 203

Summary	 204
Index	 205

Preface
AWS Development Essentials is a single place where you can find solutions for
all of your issues with Amazon Web Services. This book will explain how to begin
and manage eight different services using the AWS SDKs and APIs as well as the
AWS Management Console, a browser-based graphical user interface to interact
with the services. It will include a significant number of examples that can be used
by anyone, from a newbie to an expert. Using the examples of this book, users can
perform advanced-level programming and gain the advantages of AWS SQL and
NoSQL databases in their application at significantly lower costs. The final chapter
of this book is purely dedicated to how you can create an application having EC2,
VPC, RDS, SNS, and S3 services as the backbone of the application and how you
can deploy and manage this application using Elastic Beanstalk.

What this book covers
Chapter 1, An Introduction to Amazon Web Services, helps you to start accessing
AWS through the Management Console and shows the steps required to set
up and configure the IDE and SDK tools.

Chapter 2, Working with AWS Storage Services, makes you aware of the different
storage techniques available in AWS and how to access them through the IDE.

Chapter 3, Computing and Networking Services, teaches you about the creation and
management of EC2 instances in different regions and VPCs.

Chapter 4, Managed Services and the Databases, makes you familiar with the Relational
Database Service and DynamoDB, a NoSQL database service.

Chapter 5, Deployment and Management, teaches you how to use Amazon IAM for
identity management and how to deploy an application using Elastic Beanstalk.

Preface

[2]

Chapter 6, Working with the AWS Simple Notification Service – SNS, helps you to dive
deep into different notification and messaging options, explaining the challenges
and troubleshooting in detail.

Chapter 7, Working with AWS SQS, helps you to explore different queuing options,
explaining the challenges and troubleshooting in detail.

Chapter 8, Building an Application Using AWS, teaches you how to create, deploy,
and manage an application that uses multiple AWS services.

What you need for this book
To start using this book, you need the following things:

•	 An AWS account
•	 Java 1.6 or higher
•	 Eclipse (Juno or Kepler)
•	 The AWS SDK
•	 AWS CLI tools
•	 MySQL Workbench

Who this book is for
This book is ideal for programmers who want to move their existing infrastructure
to the AWS Cloud and start using AWS services in all the application tiers using
services such as compute, file storage, database, queuing, messaging or mailing
in an application, and finally, hosting this application in AWS too. Readers
should have a basic knowledge and understanding of Java programs.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To use the low-level API, refer to the AmazonGlacierClient class, which
provides each and every method that maps REST calls for Glacier."

Preface

[3]

A block of code is set as follows:

//s3_KEY is name of file we want to upload
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(s3_KEY);
request.WithFilePath(pathToFile)
client.PutObject(request);

Any command-line input or output is written as follows:

aws sns --topic-arn <topic-arn> --protocol <protocol-name> --
notification-endpoint <endpoint>

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, click on Libraries and add External Jar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added
to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

An Introduction to Amazon
Web Services

Amazon Web Services (AWS) is a leading public cloud provider. One good thing
with AWS is the abundant number of services and tools offered, which helps the
programmer to use them in an easy and customized way. There are different tools and
methods available to perform the same operation with different, varying complexities.
Various options are available, depending on the user's level of experience. In this book,
we will start with an overview of each service, learn about the various tools available
for programmer interaction, and finally see the troubleshooting and best practices to be
followed while using these services. In the final chapter, you will learn how to develop
an application using AWS services. AWS provides a handful of services in every area.
A separate book can be written for each service. For this reason, we will discuss one
service in each section and learn how to use it.

In this chapter, we will cover the following topics:

•	 Navigate through the AWS Management Console
•	 Describe the security measures that AWS provides
•	 AWS interaction through the SDK and IDE tools

An Introduction to Amazon Web Services

[6]

A background of AWS and its needs
AWS is based on an idea presented by Chris Pinkham and Benjamin Black with
a vision toward Amazon's retail computing infrastructure. The first Amazon offering
was SQS, in 2004. Officially, AWS was launched and made available online in 2006,
and within a year, 200,000 developers had signed up for these services. Later, due
to a natural disaster (June 29, 2012 storm in North Virginia, which brought down
most of the servers residing at this location) and technical events, AWS faced a lot of
challenges. A similar event happened in December 2012, after which AWS has been
providing services as stated. AWS learned from these events and made sure that the
same kind of outage wouldn't occur even if the same event occurred again. AWS is
an idea born in a single room, but the idea is now made available and used by almost
all the cloud developers and IT giants.

AWS is greatly loved by all kinds of technology admirers. Irrespective of the
user's expertise, AWS has something for various types of users. For an expert
programmer, AWS has SDKs for each service. Using these SDKs, the programmer
can perform operations by entering commands in the command-line interface.
However, an end user with limited knowledge of programming can still perform
similar operations using the graphical user interface of the AWS Management
Console, which is accessible through a web browser. If programmers need
interactions between a low-level (SDK) and a high-level (Management Console),
they can go for the integrated development environment (IDE) tools, for which
AWS provides plugins and add-ons. One such commonly used IDE for which AWS
has provided add-ons is the Eclipse IDE. You will learn about the AWS plugin for
the Eclipse IDE in the last section of this chapter. As of now, we will start with the
AWS Management Console.

The AWS Management Console
The most popular method of accessing AWS is via the Management Console
because of its simplicity of usage and power. Another reason why the end user
prefers the Management Console is that it doesn't require any software to start
with; having an Internet connection and a browser is sufficient. As the name
suggests, the Management Console is a place where administrative and advanced
operations can be performed on your AWS account details or AWS services.
The Management Console mainly focuses on the following features:

•	 One-click access to AWS services
•	 AWS account administration
•	 AWS management using handheld devices
•	 AWS infrastructure management across the globe

Chapter 1

[7]

One-click access to the AWS services
To access the Management Console, all you need to do is first sign up with AWS.
Once done, the Management Console will be available at https://console.aws.
amazon.com/. Once you have signed up, you will be directed to the following page:

Each and every icon on this page is an Amazon web service. Two or more services will
be grouped under a category. For example, in the Analytics category, you can see three
services: Data Pipeline, Elastic MapReduce, and Kinesis. Starting with any of these
services is very easy. Have a look at the description of the service at the bottom of the
service icon. As soon as you click on the service icon, it will take you to the Getting
started page of the corresponding service, where brief as well as detailed guidelines
are available. To start with any of the services, only two things are required. The first
one is an AWS account and the second one is the supported browser. The Getting
started section usually will have a video, which explains the specialty and use cases
of the service that you selected. Once you finish reading the Getting started section,
optionally you can go through the DOC files specific to the service to know more
about the syntaxes and usage of the service operations.

An Introduction to Amazon Web Services

[8]

AWS account administration
The account administration is one of the most important things to make note of. To
do this, click on your displayed name (in this case, Prabhakar) at the top of the page,
and then click on the My Account option, as shown in the preceding screenshot. At
the beginning of every month, you don't want AWS to deduct all of your salary by
stating that you have used these many services costing this much money; hence, all
this management information is available in the Management Console. Using the
Management Console, you can infer the following information:

•	 The monthly billing in brief as well as the detailed manner (cost split-up
of each service) along with a provision to view VAT and tax exemption

•	 Account details, such as the display name and contact information
•	 Provision to close the AWS account

All the preceding operations and much more are possible.

AWS management using handheld devices
Managing and accessing the AWS services is through (but not limited to) a PC. AWS
provides a handful of applications for almost all or most of the mobile platforms,
such as Android, iOS, and so on. Using these applications, you can perform all the
AWS operations on the move. You won't believe that having a 7-inch Android tablet
with the installed AWS Console application from Google Play will enable you to ask
for any Elastic Compute Cloud (EC2) instance from Amazon and control it (start, stop,
and terminate) very easily. You can install an SSH client in the tablet and connect to the
Linux terminal. However, if you wish to make use of the Windows instance from EC2,
you might use the Graphics User Interface (GUI) more frequently than a command
line. A few more sophisticated software and hardware might be needed, for example,
you should have a VNC viewer or remote desktop connection software to get the
GUI of the EC2 instance borrowed. As you are making use of the GUI in addition to
the keyboard, you will need a pointer device, such as a mouse. As a result, you will
almost get addicted to the concept of cloud computing going mobile.

Chapter 1

[9]

AWS infrastructure management across
the globe
At this point, you might be aware that you can get all of these AWS services from
servers residing at any of the following locations. To control these services used
by you in different regions, you don't have to go anywhere else. You can control
it right here in the same Management Console. Using the same Management
Console, just by clicking on N.Virginia and choosing the location (at the top of
the Management Console), you can make the service available in that region,
as shown in the following screenshot:

You can choose the server location at which you want the service (data and machine)
to be made available based on the following two factors:

•	 The first factor is the distance between the server's location and the client's
location. For example, if you have deployed a web application for a client
from North California at a Tokyo location, obviously the latency will be high
while accessing the application. Therefore, choosing the optimum service
location is the primary factor.

•	 The second factor is the charge for the service in a specific location. AWS
charges more for certain crowded servers. Just for illustration, assume that
the server for North California is used by many critical companies. So this
might cost you twice if you create your servers at North California compared
to the other locations. Hence, you should always consider the trade-off
between the location and cost and then decide on the server location.

An Introduction to Amazon Web Services

[10]

Whenever you click on any of the services, AWS will always select
the location that costs you less money as the default.

AWS security measures
Whenever you think of moving your data center to a public cloud, the first question
that should arise is about data security. In a public cloud, through virtualization
technology, multiple users might be using the same hardware (server) in which
your data is available. You will learn in detail about how AWS ensures data security.

Instance isolation
Before learning about instance isolation, you must know how AWS EC2 provisions
the instances to the user. This service allows you to rent virtual machines (AWS calls
it instances) with whatever configurations you ask. We will discuss EC2 in detail in
Chapter 3, Computing Services and Networking.

Let's assume that you requested AWS to provision 2 GB RAM, a 100 GB HDD,
and an Ubuntu instance. Within a minute, you will be given the instance's connection
details (public DNS, private IP, and so on), and the instance starts running. Does
this mean that AWS assembled 2*1 GB RAM and 100 GB HDD into a CPU cabinet
and then installed Ubuntu OS in it and gave you the access? The answer is no. The
provisioned instance is not a single PC (or bare metal) with an OS installed in it.
The instance is the outcome of a virtual machine provisioned by Amazon's private
cloud. The following diagram shows how a virtual machine can be provisioned by
a private cloud:

Hardware/Host

Hypervisor

Apps

Win 7 Linux Suse

Apps Apps

VM VM VM

Let's examine the diagram from bottom to top. First, we will start with the underlying
Hardware/Host. Hardware is the server, which usually has a very high specification.
Here, assume that your hardware has the following configuration: 99 GB RAM, a 450
TB HDD, and a few other elements, such as NIC, which you need not consider now.
The next component in your sights is the Hypervisor.

Chapter 1

[11]

A hypervisor or virtual machine monitor (VMM) is used to create and run virtual
machines on the hardware. In private cloud terms, whichever machine runs a
hypervisor on it is called the host machine. Three users can request each of them
need instances with 33 GB RAM and 150 TB HDD space. This request goes to
the hypervisor and it then starts creating those VMs.

After creating the VMs, a notification about the connection parameters will be sent
to each user. In the preceding diagram, you can see the three virtual machines (VMs)
created by the hypervisor. All the three VMs are running on different operating
systems. Even if all the three virtual machines are used by different users, each will
feel that only he/she has access to the single piece of hardware, which is only used by
them; user 1 might not know that the same hardware is also being used by user 2, and
so on. The process of creating a virtual version of a machine or storage or network is
called virtualization. The funny thing is that none of the virtual machines knows that
it is being virtualized (that is, all the VMs are created on the same host). After getting
this information about your instances, some users may feel deceived, and some will
be even disappointed and say, has your instance been created on a shared disk or resource?
Even though the disk (or hardware) is shared, one instance (or owner of the instance)
is isolated from the other instances on the same disk through a firewall. This concept
is termed as instance isolation. The following diagram demonstrates instance isolation
in AWS:

Customer 1

security groups

Customer 2

security groups
...

Customer n

security groups

Customer 1 Customer 2 ... Customer n

Hypervisor

Virtual Interfaces

Firewall

Physical Interfaces

All interaction will be through firewall

An Introduction to Amazon Web Services

[12]

The preceding diagram clearly demonstrates how EC2 provides instances to every
user. Even though all the instances are lying in the same disk, they are isolated by
the hypervisor. The hypervisor has a firewall that does this isolation. So, the physical
interface will not interact with the underlying hardware (machine or disk where
instances are available) or virtual interface directly. All these interactions will be
through the hypervisor's firewall. This way, AWS ensures that no user can directly
access the disk, and no instance can directly interact with another instance even if
both instances are running on the same hardware. In addition to the firewall, during
the creation of the EC2 instance, the user can specify the permitted and denied
security groups of the instance. These two ideologies provide instance isolation.

In the preceding diagram, Customer 1, Customer 2, and so on are
virtualized disks since the customer instances have no access to raw
or actual disk devices. As an added security measure, the user can
encrypt his/her disk so that other users cannot access the disk content
(even if someone gets in contact with the disk).

Isolated GovCloud
Similar to North California or Asia Pacific, GovCloud is also a location where
you can get your AWS services. This location is specifically designed only for
government and agencies whose data is very confidential and valuable, and
disclosing this data might result in disaster. By default, this location will not be
available to the user. If you want access to this location, then you need to raise
a compliance request at http://aws.amazon.com/compliance/contact/ and
submit the FedRAMP Package Request Form downloadable at http://cloud.cio.
gov/document/fedramp-package-request-form. From these two URLs, you can
understand how secure the cloud location really is.

CloudTrail
CloudTrail is an AWS service that performs user activity and changes tracking.
Enabling CloudTrail will log all the API request information into your S3 bucket,
which you have created solely for this purpose. CloudTrail also allows you to
create an SNS topic as soon as a new logfile is created by CloudTrail. CloudTrail,
in conjunction with SNS, provides real-time user activity as messages to the user.

Chapter 1

[13]

Simple Storage Service (S3) allows AWS users to store files. S3
will be discussed in Chapter 2, Working with AWS Storage Services.
Similarly, Simple Notification Service (SNS) permits the AWS
user to be notified (by an e-mail or SMS) when a condition occurs.
You will learn more about SNS in Chapter 6, Working with the AWS
Notification Service – SNS.

Password
This might sound funny. After looking at CloudTrail, if you feel that someone
else is accessing your account, the best option is to change the password. Never let
anyone look at your password, as this could easily compromise an entire account.
Sharing the password is like leaving your treasury door open.

Multi-Factor Authentication
Until now, to access AWS through a browser, you had to log in at
http://aws.amazon.com and enter your username and password. However,
enabling Multi-Factor Authentication (MFA) will add another layer of security
and ask you to provide an authentication code sent to the device configured with
this account. In the security credential page at https://console.aws.amazon.com/
iam/home?#security_credential, there is a provision to enable MFA. Clicking
on Enable will display the following window:

Selecting the first option A virtual MFA device will not cost you money, but
this requires a smartphone (with an Android OS), and you need to download an
app from the App Store. After this, during every login, you need to look at your
smartphone and enter the authentication token. More information is available
at https://youtu.be/MWJtuthUs0w.

An Introduction to Amazon Web Services

[14]

Access Keys (Access Key ID and Secret
Access Key)
In the same security credentials page, next to MFA, these access keys will be made
available. AWS will not allow you to have more than two access keys. However,
you can delete and create as many access keys as possible, as shown in the
following screenshot:

This access key ID is used while accessing the service via the API and SDK. During
this time, you must provide this ID. Otherwise, you won't be able to perform any
operation. In other words, if someone else gets or knows this ID, they could pretend to
be you through the SDK and API. In the preceding screenshot, the first key is inactive
and the second key is active. The Create New Access Key button is disabled because
I already have a maximum number of allowed access keys. As an added measure, I
forged my actual IDs.

It is a very good practice to delete a key and create a new key every
month using the Delete command link and toggle the active keys every
week (by making it active and inactive) by clicking on the Make Active
or Make Inactive command links. Never let anyone see these IDs. If
you are ever in doubt, delete the ID and create a new one.

Clicking on the Create New Access Key button (assuming that you have less than
two IDs) will display the following window, asking you to download the new access
key ID as a CSV file:

Chapter 1

[15]

The CloudFront key pairs
The CloudFront key pairs are very similar to the access-key IDs. Without these keys,
you will not be able to perform any operation on CloudFront. Unlike the access key
ID (which has only an access key ID and a secret access key), here you will have a
private key and a public key along with the access key ID, as shown in the following
screenshot:

If you lose these keys once, then you need to delete the key pair and create a new
key pair. This is also an added security measure.

X.509 certificates
X.509 certificates are mandatory if you wish to make any SOAP requests on any
AWS service. Clicking on Create new certificate will display the following window,
which performs exactly the same function as discussed in the previous section:

Account identifiers
There are two IDs that are used to identify ourselves when accessing the service
via the API or SDK. These are the AWS account ID and the canonical user ID.
These two IDs are unique. Just as with the preceding parameters, never share
these IDs or let anyone see them. If someone has your access ID or key pair,
the best option is to generate a new one. But it is not possible to generate a new
account ID or canonical user ID.

An Introduction to Amazon Web Services

[16]

AWS interaction through the SDK and
IDE tools
As discussed, AWS has a bit for everyone with respect to the kind of knowledge or
expertise that the user has. An end user might find the Management Console useful.
From a programmer's point of view, the SDK will be helpful. AWS provides SDK
for most of the commonly used languages, such as Java, Ruby, .NET, PHP, Node.js,
and Python. More information about these tools is available at http://aws.amazon.
com/tools. For an Eclipse IDE addict, IDE tools will be very supportive. Now that
we have discussed enough about the Management Console, we can spend some
time on the SDK and IDE tools.

The first IDE tool – the Eclipse plugin
Eclipse is one of the most commonly used open source IDEs, and it provides
a plugin to work with AWS. Almost all the Java developers use Eclipse for
application development. Eclipse can be downloaded from www.eclipse.org/
downloads. Try to download the latest version. Throughout the book, you will
see Eclipse Juno. To get started with Eclipse, visit www.eclipse.org/users.
To configure the AWS plugin in the Eclipse IDE, follow these steps:

1.	 Open Eclipse and select Install New Software from the Help menu,
as shown in the following screenshot:

2.	 In the following screenshot, you need to enter http://aws.amazon.com/
eclipse/ and press the Enter key. It will display all the available plugins
for AWS. You can either install everything or only the necessary components
(it's better to install everything because there will be dependency between
these plugins).

Chapter 1

[17]

3.	 The following page will display the components that will be installed on
Eclipse. Confirm it and then proceed.

An Introduction to Amazon Web Services

[18]

4.	 The following page will show the invalid components (in this case,
AWS SDK for Android). If the component (not installed) does not
cause any trouble, just proceed with the installation.

5.	 To proceed with the installation, you must accept the Apache license and the
Eclipse foundation agreement. Check the I accept the terms of the license
agreements condition, and click on the Finish button to complete
the installation, as shown here:

Chapter 1

[19]

6.	 Due to the dependency among packages, there might be some dependency
errors thrown while setting up the plugin. In this case, select Install New
Software from the Help menu, enter the URL http://download.eclipse.
org/datatools/updates/1.12, select the following package, and repeat
the installation of the AWS plugin, as shown in the following screenshot:

An Introduction to Amazon Web Services

[20]

7.	 There's a possibility that you might see the following security warning. Make
sure that you're installing from AWS and not from any third party. Once you
know that the source is safe, only then proceed by clicking on OK.

8.	 The same security warning will be shown, and if you wish, you can trust
Amazon and add it to your safe list. This can be done by checking the
following option:

9.	 After successful installation, Eclipse will ask you to restart for the changes
to take effect, as shown in the following screenshot:

Chapter 1

[21]

10.	 After restarting Eclipse, you will see a new icon called AWS toolkit, and
the default Eclipse perspective will be Java. To open the perspective to
work with AWS, select the Open Perspective option from the Window
menu. It will show the first two perspectives.

11.	 Double-click on AWS Management to begin your work, as shown in the
following screenshot:

12.	 While working with the Management Console, you must log in with your
AWS username and password. However, in the case of the Eclipse plugin,
you need to specify a few more attributes for authentication. You can specify
your account details by clicking on the AWS toolkit for the Eclipse icon, and
select the Preferences option, as shown in the following screenshot:

An Introduction to Amazon Web Services

[22]

13.	 The following pop-up window will ask you for details, which you can fetch
from the Security page in the Management Console:

14.	 Once the configuration is successful, all the AWS components will be loaded.
You can right-click on the corresponding service and select Refresh to get the
latest data. The icon in the top-right corner (with the US flag) is the region
that we selected, as shown in the following screenshot:

15.	 To change the region, click on the flag icon in the top-right corner of the
page, and then select the region from the drop-down menu.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 1

[23]

The SDK tool
Working with AWS using the Software Development Kit (SDK) is a bit difficult
compared to the Eclipse IDE. Even though both perform the same operation,
the complexity is a little higher with SDK because of the SDK configuration.
The SDK can be downloaded in a ZIP format from http://sdk-for-java.
amazonwebservices.com/latest/aws-java-sdk.zip.

You can extract the downloaded ZIP file to any location of your choice. After
this, in the case of Windows OS, you need to create a file named credentials at the
C:\Users\<USERNAME>\.aws\ location. The file should have the following details:

[Prabhakar]
aws_access_key_id=AKIMODIFIEDAK3A
aws_secret_access_key=5W6jveTZ7PrabhakarHasModifiedwHpzM+hzOo

This file was created while configuring the Eclipse plugin. If this file or directory is
not available, you need to create it and fill it with the access key ID and secret access
key value. Apart from this, almost everything else is specific to the individual service.
You will learn about this in detail in the upcoming chapters.

Summary
In this chapter, you learned the AWS Management Console and its commonly used
SDKs and IDEs. You also learned how AWS secures your data. Then, you looked
at the AWS plugin configuration on the Eclipse IDE.

The first section made the user familiar with the AWS Management Console.
After that, you explored a few of the important security aspects of AWS and learned
how AWS handles it. Finally, you learned about the different AWS tools available
to the programmer to make his development work easier. In this last section, you
examined the common SDKs and IDE tools of AWS. The service-specific SDK and
IDE will be discussed separately in the upcoming chapters.

In the next chapter, you will learn about how to store and manage your data on
AWS using Elastic Block Storage (EBS) and Simple Storage Service (S3).

Working with AWS
Storage Services

AWS offers high durability and availability for its storage services at a low cost.
With a pay-as-you-go pricing model, AWS provides flexibility and agility in its
storage services and processes within a highly secured environment. AWS provides
storage solutions and services for backup, archive, disaster recovery, and much
more. It also supports block, file, and object types of storage with a highly available
and flexible infrastructure. The major characteristics of storage include:

•	 Cost-effective and high-scale storage
•	 Data protection and data management
•	 Storage gateway
•	 Choice of instance storage options

AWS provides us with a lot of storage options depending on the expected quality.
Some users might want faster, elastic, and Plug and Play type of storage, such as a
pen drive. On the other hand, some users might need the storage available to them
in the form of files and folders, similar to an operating system such as Windows.
We will discuss what is possible and the best storage scenarios and options in this
chapter. Our discussion will cover the following topics:

•	 AWS storage options
•	 Amazon EBS
•	 Amazon S3 bucket and objects

Working with AWS Storage Services

[26]

AWS storage options
There are various storage options available on AWS from which you can choose
the best suitable option. You can divide the storage options into the following
two categories:

•	 Ephemeral storage (instance storage)
•	 Persistent storage (Elastic Block Storage)

While launching an instance from the AWS EC2 dashboard, a user can select an
instance type and its size, which will be discussed in the upcoming chapters. The
instance types start from the m1.small type. Any extra storage will be added for
this instance automatically without attaching an external storage after launching the
instance. The storage is more noticeable in larger instances, such as m1.medium, and
will come with a larger disk in the /mnt directory of your Linux system. Also, it's
free. The user won't incur any additional charges for using it to either read or write.
To identify the storage functionalities, it is necessary to learn the major types of
storage. Let's start with the first storage type, that is, ephemeral storage.

Working with ephemeral storage
An ephemeral disk is a temporary storage option that is automatically added to your
instance, and its size depends on your instance type. The ephemeral disk size of an
instance ranges from 150 GiB to 48 TiB and varies by a particular instance type. There
are several instance types available on the AWS EC2 launching wizard. For certain
instance types such as c1.medium and m1.small, they practice instance storage
repeatedly as swap as they have limited memory, whereas several are habitually
structured and mounted in the /mnt directory.

More information about instance types is available in table 2.0, in the
Persistent storage (EBS) section.

Ephemeral storage is temporary in nature. For this kind of storage, one should not
depend on these disks to keep long-term production data or other important data.
Let's take an example such as stopping and starting an instance on a failure of the
underlying hardware of EC2 while terminating the instance. For these scenarios,
the user should consider EBS/S3 or any other instant storage to be the best solution.
Let's take an example of losing the ephemeral disk data while starting and stopping
the instance.

Chapter 2

[27]

The following are the steps to test this operation practically:

1.	 Launch an instance that has an ephemeral disk, as shown in the
following screenshot:

2.	 Log in with the instance and navigate to the /mnt or /media directory after
checking the ephemeral storage using the # df –h command, as shown here:

3.	 Create any directory or file in the /media directory as per the example:

Working with AWS Storage Services

[28]

4.	 Now, stop the instance and start it again. After starting the instance,
check the /media directory with your content, as shown in the following
screenshot. You won't be able to see your content as you have performed
the stop and start operation with the instance.

5.	 Now, let's check the reboot operation after creating some content in
the /media/ephemeral10 directory, as shown here:

Chapter 2

[29]

6.	 Reboot your instance from the EC2 dashboard, as shown in the
following screenshot. For more details, refer to Chapter 3,
Computing Services and Networking.

7.	 After rebooting the process, check the content as follows:

Working with AWS Storage Services

[30]

Persistent storage
EC2 instances that use Amazon Elastic Block Storage (EBS) for the root device do
not, by default, have an instance store accessible at boot time. It is not possible to
assign an instance to store volumes after the instance has been launched. Therefore,
if a user wants their Amazon EBS-backed instance to use the instance to store
volumes, they must postulate them using a block device mapping when creating
the AMI or when launching an instance. For example, the block device mapping
entries are /dev/sdb=ephemeral0 and /dev/sdc=ephemeral1.

The following table, table 2.0, lists the ephemeral storage size with respect to the
instance type of EC2, which can be found on AWS official site (http://aws.amazon.
com/ec2/instance-types/):

Instance type Instance storage volume
c1.medium 1 x 350 GB†
c1.xlarge 4 x 420 GB (1680 GB)
c3.large 2 x 16 GB SSD (32 GB)
c3.xlarge 2 x 40 GB SSD (80 GB)
c3.2xlarge 2 x 80 GB SSD (160 GB)
c3.4xlarge 2 x 160 GB SSD (320 GB)
c3.8xlarge 2 x 320 GB SSD (640 GB)
cc2.8xlarge 4 x 840 GB (3360 GB)
cg1.4xlarge 2 x 840 GB (1680 GB)
cr1.8xlarge 2 x 120 GB SSD (240 GB)
hi1.4xlarge 2 x 1024 GB SSD (2048 GB)
hs1.8xlarge 24 x 2048 GB (49 TB)
i2.xlarge 1 x 800 GB SSD
i2.2xlarge 2 x 800 GB SSD (1600 GB)
i2.4xlarge 4 x 800 GB SSD (3200 GB)
i2.8xlarge 8 x 800 GB SSD (6400 GB)
m1.small 1 x 160 GB†
m1.medium 1 x 410 GB

Chapter 2

[31]

Instance type Instance storage volume
m1.large 2 x 420 GB (840 GB)
m1.xlarge 4 x 420 GB (1680 GB)
m2.xlarge 1 x 420 GB
m2.2xlarge 1 x 850 GB
m2.4xlarge 2 x 840 GB (1680 GB)
m3.medium 1 x 4 GB SSD
m3.large 1 x 32 GB SSD
m3.xlarge 2 x 40 GB SSD (80 GB)
m3.2xlarge 2 x 80 GB SSD (160 GB)
r3.large 1 x 32 GB
r3.xlarge 1 x 80 GB
r3.2xlarge 1 x 160 GB
r3.4xlarge 1 x 320 GB
r3.8xlarge 2 x 320 GB (640 GB)

There are lots of theories around instances backed with EBS or instance storages
concerning performance, costs, and so on. In general, one can find the subsequent
facts, as follows:

•	 An instance with store-backed storage is faster than EBS for the modest
statistic that it is not persistent.

•	 You can't stop an instance to pay less. Nevertheless, if you do, you will
simply lose everything. It is, therefore, necessary to create backup strategies.

•	 You can't advance an instance or scale vertically. It is necessary to
create an Amazon Machine Image (AMI), which can be used to
launch a bigger instance.

And, of course, there are numerous workarounds for this, but it is highly
recommended that you use this type of storage only when your application is
currently designed to not store anything locally. For data assurance and reliability,
you can have an EBS volume attached to the instance. This is to make the application
data safe, which in turn will serve backups or to store sensitive data that could
be lost.

Working with AWS Storage Services

[32]

Working with Amazon EBS
Amazon EBS is a persistent storage provided by AWS. All the data stored on persistent
storage is available even after instance shutdown and can be operated at a device level.
When the instance is launched, the root device volume holds the image that is used to
boot it. When AWS announced Amazon EC2, all AMIs were supported by the Amazon
EC2 instance store. This means that the root device for an instance (where the OS is
installed) launched from the AMI is an instance store volume formed from a template
stored in Amazon's Simple Storage Service (S3). After introducing EBS storages (EBS
volumes) in late 2009, AWS presented AMIs that were backed by Amazon EBS. This
means that the root device for an instance launched from the AMI will be an Amazon
EBS volume created from an Amazon EBS snapshot itself. The user can either choose
AMIs backed by the Amazon EC2 instance store or AMIs backed by Amazon EBS.
Experts recommend that you use AMIs backed by Amazon EBS because they are
launched faster and use persistent storage.

For example, a user can detach an EBS volume from one instance and attach it to
another. However, EBS cannot be attached to more than one instance at the same
time, but multiple EBSs can be assigned to one EC2 instance and can then be lined
and/or emulated into a larger volume using Redundant Array of Inexpensive
Disks (RAID).

These two AMIs are based on type and reveal several differences, for example,
in their life cycle, boot time, and data persistence characteristics, as shown in the
following table:

Characteristic name Amazon EBS backed Instance (S3) store backed
Life cycle Supports the stopping

and restarting of an
instance by saving a
state to EBS.

An instance cannot be stopped; it
can either be in the running state
or terminated state.

Data persistence Data continues in EBS
on an instance failure
or system restart. Data
can also be configured
to persist when the
instance is terminated.

Instance storage does not continue
on instance shutdown or failure.
It is possible to attach the nonroot
devices using EBS.

Boot time Usually less than 1
minute.

Usually less than 5 minutes.

Chapter 2

[33]

Using persistent storage with EC2
EBS is a mountable storage service; it can be mounted as a device (such as a Plug
and Play USB pen drive) to an EC2 instance.

Let's take a look at an example to attach EBS (persistent storage) to your instance
using the following steps:

1.	 Navigate to the Amazon EC2 console, as shown in the following screenshot:

2.	 On the left-hand side, in the navigation pane, you will find the ELASTIC
BLOCK STORE section; in this, click on Volumes, as shown here:

Working with AWS Storage Services

[34]

The console displays a list of the current volumes.

3.	 Select a volume and click on Attach Volume. Select the appropriate instance
from the drop-down box. Only the instances in the same availability zone
as the volume will be displayed, as shown in the following screenshot:

4.	 Fill the necessary details and click on the Attach button to attach the
volume to the instance. The volume and the instance must be in the
same availability zone.

Instances with a Windows OS will be using either Red Hat or Citrix
paravirtual (PV) drivers. If you have a Windows instance with Citrix
PV drivers, you can attach a total of 25 EBS volumes; but Windows
instances with Red Hat PV drivers are limited to 16 volumes only.

The following diagram summarizes the life cycles of both persistent and
nonpersistent storages with S3 and EBS-backed EC2 instances:

Chapter 2

[35]

Initialization Pending Running

Terminated Shutting Down

Costs
EC2 ($ / hour)

Launch

Terminate

The EBS-backed EC2 instances present a new stopped state, which is currently not
available in the S3-backed instances. It is essential to keep in mind that while an
instance is in a stopped state, the user will not experience any EC2 running charges
except the EBS storage charges that are related to the instance, as shown in the
following diagram:

Shutting Down

Initialization Pending

Terminated Stopped

Costs
EBS ($ / GB)

Running

Costs
EC2 ($ / hour)

Launch

Terminate

Terminate

Stop Start

The other benefit of using EBS-backed instances over S3-backed instances is that a
stopped instance can be started at a later time while still preserving its core state.

Working with AWS Storage Services

[36]

Working with AWS
To store an object in Amazon S3, the user can upload a file to a bucket. When
uploading the file, a user can set permissions on the object as well as on the
additional metadata.

Buckets are the containers for objects, and a user can have one or more buckets. For
each bucket, the user can control user access (who can create, delete, and list objects
in the bucket), view access logs for it and its objects, and choose the geographical
region where Amazon S3 will store the bucket and its contents.

Creating the S3 bucket
An object can be a file and might contain metadata that describes the file. The
following screenshot illustrates the AWS S3 dashboard in detail:

To create an S3 bucket, perform the following steps:

1.	 By selecting S3, you will be taken to the S3 dashboard, as shown in the
following screenshot:

Chapter 2

[37]

2.	 Click on the Create Bucket button and you will be prompted by a pop-up
box to create your first bucket. Supply a region name to see the following
bucket creation dashboard that demonstrates the power of AWS S3 and
its configurations:

Working with AWS Storage Services

[38]

3.	 The bucket name must be unique worldwide; otherwise, AWS won't allow
you to create a bucket with that name. After the creation of the bucket, you
will see the following page:

Bucket-related operations can be executed via the CLI, API, or from the dashboard
directly. This chapter will detail various bucket operations and configurations from
CLI. To start with CLI, the user will require the Amazon Web Service SDK and
an AWS account with an access key and a private key to connect to Amazon S3
(as configured in Chapter 1, An Introduction to AWS). The object controls all the
actions by which you can interact with the AWS S3 instance, as shown here:

const string AWS_ACCESS_KEY = "your_AWS_access_key";
const string AWS_SECRET_KEY = "your_AWS_secret_key";
AwsS3 client = newAwsS3(AWS_ACCESS_KEY, AWS_SECRET_KEY)

Normally, these keys are stored in the web.config file and are accessed by the
code in web-based applications, as follows:

// In your application config file, set this
<appSettings>
<add key="AWSAccessKey" value="AWS_access_key"/>
<add key="AWSSecretKey" value="AWS_secret_key"/>
<appSettings>

It is now necessary to create a function to access the S3 credentials, as follows:

// Function to get it
public static AwsS3 GetS3Client()
{

Chapter 2

[39]

NameValueCollection appConfig = ConfigurationManager.AppSettings;

 AwsS3 s3Client = AWSClientFactory.CreateAmazonS3Client(
appConfig["AWSAccessKey"],
appConfig["AWSSecretKey"]
);
return s3Client;
}

A user can now start working with AWS S3. In the following example, you will
see how to upload and retrieve content from the S3 bucket. If you want to store
data in S3, you need to create a bucket. It is similar to the root folder in Windows.
In Amazon S3, the maximum number of buckets is 100 and the names of buckets
are unique globally.

You are allowed to create a maximum of 100 buckets per account, and these bucket
names must be unique around the globe. Using the following code, you can create
a sample bucket on AWS S3:

AWSCredentials credentials = new
 ProfileCredentialsProvider().getCredentials();
AmazonS3 s3 = new AmazonS3Client(credentials);
Region usEast = Region.getRegion(Regions.US_EAST_1);
s3.setRegion(usEast);
String bucketName = "prabhakaran";
s3.createBucket(bucketName);

After the successful execution of the preceding code, you will be able to see a
new bucket named prabhakaran on the AWS S3 dashboard, as shown in the
following screenshot:

Working with AWS Storage Services

[40]

There are various ways to create a new file in the S3 bucket, but we will introduce
you to some of the generic/simplest ways. In the first method, a user needs a
FileKey, which will be unique with a full path and a content body that contains
information. To create a directory, use the FileKey with the special character (/)
at the end to show that you want to create a specified directory, as shown in the
following code:

String folder_KEY = "Demo Create folder/";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(folder_KEY);
request.WithContentBody("");
client.PutObject(request);

The following screenshot shows how the new directory that will be created will look:

To create a new file, there is a minor change in the directory creation code, shown
as follows:

String S3_KEY = "Demo Create File.txt";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(s3_KEY);
request.WithContentBody("This is content of S3 object in Demo file.");
client.PutObject(request);

After the successful execution of the preceding code, the file will be created in the
bucket, as follows:

Chapter 2

[41]

To create a file within the directory, it is necessary to change the FileKey to include
the directory name, as shown here:

String S3_KEY = "Demo Create folder/" + "Demo Create File.txt";
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(s3_KEY);
request.WithContentBody("This is content of S3 object in Demo file.");
client.PutObject(request);

After the successful execution of the preceding code, the file will be created in the
defined directory within the bucket. You will now see how to upload files from a
local machine to an S3 bucket with an absolute path, as follows:

//s3_KEY is name of file we want to upload
PutObjectRequest request = new PutObjectRequest();
request.WithBucketName(BUCKET_NAME);
request.WithKey(s3_KEY);
request.WithFilePath(pathToFile)
client.PutObject(request);

Amazon S3 has many useful features that are useful to developers who want to
create a web app that needs to store data online.

Similar operations can be performed using the following code:

public class S3 {
 public static void main(String[] args) {
 AWSCredentials credentials = new
 ProfileCredentialsProvider().getCredentials();
 AmazonS3 s3 = new AmazonS3Client(credentials);
 Region usEast = Region.getRegion(Regions.US_EAST_1);
 s3.setRegion(usEast);
 String bucketName = "prabhakaran";
 //s3.createBucket(bucketName);
 String key = "folder2/sampleFile.txt";
 s3.putObject(new PutObjectRequest(bucketName, key,
 getFileToBeUploaded()));
 }

 private static File getFileToBeUploaded() {
 File file = null;
 try {
 file = File.createTempFile("localFile", ".txt");
 file.deleteOnExit();

Working with AWS Storage Services

[42]

 Writer writer = new OutputStreamWriter(new
 FileOutputStream(file));
 writer.write("Sample content through Java SDK");
 writer.close();  } catch (IOException e) {
 e.printStackTrace();
 }
 return file;
 }

}

The preceding code will create a folder named folder2 inside the bucket
prabhakaran. After this, it will create a file named sampleFile.txt inside folder2.
Then, the file will be written with the Sample content through the Java SDK.

The private function, getFileToBeUploaded, will create a temporary
file named localFile.txt, which is used to write the content to S3.
This local file will be deleted once the content is written to S3.

AWS Glacier
AWS Glacier is a storage solution to archive and back up data at a very low cost
and with rich security features. Using the AWS Glacier solution, customers can
store their data as long as they want, and it allows you to offload administrative
tasks, such as scaling and operations, on AWS. By using the AWS Glacier service
for storage, the user doesn't need to worry about data security, data replication,
and time-consuming data/hardware migrations.

AWS Glacier is a REST-based web service having data model core concepts,
including vaults and archives. Moreover, its data model includes job and notification
configuration complementary resources to the core resources. The user can have up
to 1,000 vaults per region in their AWS account. AWS Glacier is designed to provide
an average annual durability of 99.999999999 percent per archive. To start with
AWS Glacier, follow these steps:

1.	 Download the proper AWS SDK tools for Java:
°° If you are using Eclipse, you can download and install the

tools from http://aws.amazon.com/eclipse/

Chapter 2

[43]

°° For other SDK users, you can download the tools from
http://aws.amazon.com/sdkforjava/

2.	 Create a vault by performing the following steps:
1.	 Create a vault from the Amazon Glacier console by clicking on

Create Vault, as shown in the following screenshot:

2.	 Provide the appropriate vault name by clicking on Continue To
Notifications, as shown here:

Working with AWS Storage Services

[44]

3.	 If you require notifications from SNS, configure it for your vault,
as follows:

3.	 Upload your content through the Java SDK or the .NET SDK to your vault
using the code in the next step. There are three ways to upload your content
to the vault:

°° Using the low-level API: This provides basic methods, which are
available via the REST API calls to AWS Glacier.

°° Using the high-level API: This provides a high level of abstraction
for the low-level API methods.

°° Using Eclipse: This will install the AWS SDK toolkit for Eclipse and
then you can use it via an API call. To use the low-level API, refer
to the AmazonGlacierClient class, which provides each and every
method that maps REST calls for Glacier. The user then creates an
appropriate request and a response object from which the method
can return the response.

4.	 The high-level API is explained now. Its method is pretty straightforward,
so anybody can do this. To use the high-level API to upload content, use
the following code snippet:
String vaultName = "exampleVault";
String archiveToUpload = "c:/folder/demoArchive.zip";

ArchiveTransferManager atm = new
 ArchiveTransferManager(client, credentials);
String archiveId = atm.upload(vaultName, "Result 2014
 documents", new File(archiveToUpload)).getArchiveId();

Chapter 2

[45]

Usually, even when you upload a file to a vault, it will not be available
instantaneously. It usually takes at least a day for the vault inventory to
be updated. Only then will you be able to see the vault items.

5.	 Conversely, you can download your content from the Amazon vault using
the Java SDK, as follows:
importjava.io.File;
importjava.io.IOException;
importcom.amazonaws.auth.profile.ProfileCredentialsProvider
;
importcom.amazonaws.services.glacier.AmazonGlacierClient;
importcom.amazonaws.services.glacier.transfer.ArchiveTransf
erManager;
importcom.amazonaws.services.sns.AmazonSNSClient;
importcom.amazonaws.services.sqs.AmazonSQSClient;
public class AmazonGlacierDownloadArchive_GettingStarted {
public static String vaultName = "demovault";
public static String archiveId = "*** archive ID ***";
public static String downloadFilePath = "location to
download archive ";
public static AmazonGlacierClient glacierClient;
public static AmazonSQSClient sqsClient;
public static AmazonSNSClient snsClient;
public static void main(String[] args) throws IOException {
 ProfileCredentialsProvider credentials = new
ProfileCredentialsProvider();

glacierClient = new AmazonGlacierClient(credentials);
sqsClient = new AmazonSQSClient(credentials);
snsClient = new AmazonSNSClient(credentials);

glacierClient.setEndpoint("glacier.us-west-
2.amazonaws.com");
sqsClient.setEndpoint("sqs.us-west-2.amazonaws.com");
snsClient.setEndpoint("sns.us-west-2.amazonaws.com");

try {
ArchiveTransferManager atm = new ArchiveTransferManager(glacierCli
ent, sqsClient,
snsClient);

Working with AWS Storage Services

[46]

atm.download(vaultName, archiveId, new
File(downloadFilePath));

 } catch (Exception e)
 {
System.err.println(e);
 }
 }
}

6.	 You cannot delete content from the vault directly; it should be done via the
SDK or API. Use the following code snippet to delete content from the vault:
importjava.io.IOException;

importcom.amazonaws.auth.profile.ProfileCredentialsProvider
;
importcom.amazonaws.services.glacier.AmazonGlacierClient;
importcom.amazonaws.services.glacier.model.DeleteArchiveReq
uest;
public class AmazonGlacierDeleteArchive_GettingStarted {

public static String vaultName = "demovault";
public static String archiveId = " archive ID";
public static AmazonGlacierClient client;
public static void main(String[] args) throws IOException {
 ProfileCredentialsProvider credentials = new
 ProfileCredentialsProvider();

client = new AmazonGlacierClient(credentials);
client.setEndpoint("https://glacier.us-west-
2.amazonaws.com/");
try {
 // Delete the archive.
client.deleteArchive(new DeleteArchiveRequest()
 .withVaultName(vaultName)
 .withArchiveId(archiveId));

System.out.println("Deleted successfully.");

 } catch (Exception e) {
System.err.println("Archive not deleted due to some
error");
System.err.println(e);
 }
 }
}

Chapter 2

[47]

7.	 To delete the vault, click on the Delete Vault button and you are done,
as shown in the following screenshot:

Amazon Glacier is a very useful and easy-to-operate service if you want to store
your long-term data at a very cheap storage rate on AWS.

Summary
In this chapter, we have seen the major storage concepts such as ephemeral
storage and persistent storage, which are useful for startups and new users.
Later, EBS storage systems were discussed and their usage with EC2. Using
the S3 service, we illustrated how a user can leverage the benefits of object
storage on the AWS platform.

In the next chapter, you will learn about AWS Compute and Networking services,
for example, learning to create instances with other effective services. Finally, the
chapter will focus on creating virtual, private cloud fundamentals and methods of
creation for VPC.

Computing and Networking
Services

AWS offers a huge range of various cloud-based core computing services,
including a variety of compute instances that can be autoscaled to justify the
needs of your users and your application, a managed elastic load-balancing
service, and fully-managed desktop resources on the way to cloud. AWS offers a
wide set of networking services that enable you to create a logical, isolated network,
which an architect can define, and create a private network connection to the AWS
infrastructure, with a fault-tolerant, scalable, and highly available DNS service.
AWS also offers delivery services for content to end users with very low latency
and high data-transfer speed with an AWS CDN service.

AWS provides a diverse variety of computing services, which can be automatically
scaled up/down depending on the requirements of the applications in real-time usage.
Performance as well as minimal costs at certain demanding spike times can be ensured,
which is very much suited for web applications with varied traffic patterns and load.
AWS also provides load balancing services that automatically distribute the incoming
application traffic across multiple instances, enabling greater levels of fault tolerance in
multiple AZs and regions. It enables its customers to create a logically defined isolated
network, establish a private connection to the cloud, and use the highly reliable yet
scalable DNS service called Route 53. Amazon VPC, Amazon Route 53, AWS Direct
Connect, and so on are a few network-related services. Amazon EC2 is one of the
computing services that enables resizable computing capacity in the Amazon Cloud.
It makes web-scale computing easier and scalable. As a part of the discussion, we will
learn the following topics:

•	 Working with EC2
•	 Tools available to access EC2
•	 Best practices for EC2
•	 Create, secure, and access your own VPC

Computing and Networking Services

[50]

Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) is a web service from AWS, which provides
a resizable compute capacity in the cloud using its simple interface designed for
an easier web-scaling experience. It allows complete control over the computing
resources. Amazon EC2 provides the following benefits:

•	 Flexible scaling: Amazon EC2 enables you to scale resources up/down
within minimal timelines via the web service that the API calls depending
on the application requirements.

•	 Full control: Root access to each and every instance enables you to have
complete control over them.

•	 Flexible hosting: Amazon EC2 allows you to choose your configurations
(in terms of memory, CPU, and so on) so that are optimal to your operating
system. You can pick from a wide range of instance types, operating systems,
and software packages.

•	 Compatible with other AWS: Amazon EC2 in conjunction with other
AWS such as S3 or RDS, or any other AWS, will shape up a complete
computing solution around different areas.

•	 Reliable: The environments are highly reliable with 99.95 percent
availability commitment.

•	 Secure: The environments are highly secure and robust. The inbound/
outbound network access is controllable via the network ACLs and security
groups. Let's discuss this topic in detail in a later chapter on security.

•	 Cost-effectiveness: Amazon EC2 allows you to pay as you go, thereby
reducing upfront investments.

•	 Ease: The launch of the one-click EC2 console enables customers to
deploy their apps easily.

Amazon EC2 operates with a few basic elements such as instances, AMIs,
and others. Let's take a broader view of these basics in the next few sections.

Getting started with EC2 instances
EC2 instances are simply virtual computing environments/resources that can be
completely controlled just as in the case of traditional hosting systems. The hardware
of the host machine is the key for different instance types, which offers varied
combinations of compute as well as memory capabilities and storage.

Chapter 3

[51]

Images that are used to boot the instances are stored at root device volumes. The
local storage volumes of instances are known as Instance store volumes, which can
be configured at launch time with block device mapping. These volumes are mostly
used for temporary data storage because when an instance is terminated or fails,
the data on these volumes gets lost; so, it is called ephemeral storage.

Root device volume of Amazon EC2
During the launch of the EC2 Instance, the image (called AMI) required to boot
an instance will be located at the root device volume. AWS AMIs are differentiated
depending on the storage by which the instances are backed by the EBS or
Instance store.

•	 AMIs backed by Amazon EBS: The instance launched by this AMI
will contain the Amazon EBS volume as its root device

•	 AMIs backed by Instance store: The instance launched by this AMI
will contain an instance store volume created from a template stored
in Amazon S3 as its root device

Initially, when Amazon EC2 was introduced, all the AMIs were backed by the
Amazon EC2 instance store. However, in the later stages, the concept of AMIs
backed by EBS volumes came into the picture when Amazon EBS was published.
In general, AMIs backed by Amazon EBS are preferred, as they use persistent
storage and launch faster.

Working with Amazon EC2
Amazon EC2 allows you to launch your instances via web services with varieties
of OSes, load them with custom web application environments, manage the
authentication and access, and run your AMI on the required number of virtual
hardware systems.

Perform the following steps to use Amazon EC2:

1.	 Select an AMI that enables you to get up and running.
2.	 Security and network configurations are adjusted on the instances.
3.	 Select the instance type and then manage them accordingly.
4.	 Determine the requirement for multilocation.
5.	 Utilize static IP endpoints.
6.	 Pay for the resources that you consume.

Computing and Networking Services

[52]

Currently, Amazon EC2 supports the following operating systems:

•	 CentOS
•	 Debian
•	 SUSE Linux Enterprise
•	 Amazon Linux
•	 Oracle Enterprise Linux
•	 Ubuntu
•	 Red Hat Enterprise Linux
•	 Windows Server

AWS AMIs come preconfigured with most of the operating systems, and you can
also upload your own OS using the corresponding tools. Extensive support for
wide varieties of free/commercial software is provided, for example:

•	 MicroStrategy
•	 Django
•	 MongoDB
•	 Ruby on Rails

For more information visit https://aws.amazon.com/
marketplace/ref=mkt_ste_ec2.

Best practices
Let's take an overview of a few best practices for the AWS EC2 service:

•	 It is wise to manage access to AWS APIs and resources via the
Identity and Access Management (IAM) web service

•	 Instances should be launched into a VPC rather than in the EC2 Classic
•	 Security Groups (SG) should have at least permissive rules
•	 The root device's storage implications should be well-studied
•	 Dynamic IPs should be preferred on the restart of an instance
•	 Regular backups should be in place
•	 Events have to be monitored and responded to optimally
•	 Metadata should be used to track your AWS resources
•	 Critical components should be replicated and deployed

across multiple availability zones

Chapter 3

[53]

When you sign up with AWS, you will get all the services automatically and view
them in your dashboard, but you only have to pay for the services that you really
use. In the AWS free tier environments, customers will be able to use only micro
instances. It provides the following services:

•	 Regional data transfer is limited to 1 GB
•	 An EBS standard storage volume of 30 GB
•	 1 GB snapshot storage
•	 750 hours of Elastic Load Balancing (ELB)
•	 15 GB of data processing
•	 750 hours of EC2 running Windows/Linux/Unix micro instance usage.

More detailed pricing options can be found at
http://aws.amazon.com/ec2/pricing.

Tools
AWS provides a variety of tools to develop and manage applications on the cloud
platform. They fall into one of the following categories:

•	 SDKs
•	 IDEs
•	 CLIs

Getting started
Let's take a hands-on tour of the generic steps to use the Amazon EC2 platform.

Sign up to the AWS. When you create your account on AWS, all the services are
automatically enabled for your account, but you will be required to pay only for
the service that you use. The procedure to create an account and sign up for AWS
is as follows:

1.	 Create an IAM user from the IAM dashboard. IAM ensures secured access
to your AWS and your resources.

2.	 Create a key pair for the EC2 Instance. It is used to secure the login details
of your instances.

3.	 Create a security group to secure your instances. These act as firewalls,
controlling both the inbound and outbound traffic at the instance level.

Computing and Networking Services

[54]

Let's start with the procedure to create an account and sign up with AWS. Visit
http://aws.amazon.com/ and create your account by following the on-screen
instructions. The following screenshot shows the interface of the screen:

Let's proceed further by taking a look at how we can get started with Linux and
Windows instances in detail.

Windows instances
Consider that the instances (which are virtual servers in the AWS cloud
environment) have a root volume as an Amazon EBS running a Windows Server
and are secured with the corresponding key pair along with a security group, as
shown in the following diagram. Let's take a look at the step-by-step procedure.
You should use the private key while connecting to your instance.

Instance

EBS Volume

AWS

Chapter 3

[55]

The steps to launch and connect to a Windows instance are as follows:

1.	 Launch the instance.
2.	 Connect to the instance.
3.	 Follow the optional steps to create a monitoring alarm.

Let's go through the preceding steps in detail:

1.	 Let's start by launching the instance from the dashboard:
1.	 Sign in to AWS management console and navigate to Amazon EC2.
2.	 Choose the Region for your instance from the Navigation bar.
3.	 Click on Launch Instance.
4.	 Choose the appropriate Windows version (if the free tier is eligible)

from the choose an AMI page; this will serve as a template for your
EC2 instance.

5.	 Choose the appropriate hardware configuration for your instance
on the choose an instance type page.

6.	 Click on Review & launch (this enables the wizard to complete the
settings/configurations to get you started).

7.	 Review your instance settings on the Review instance launch page.
8.	 Click on the Launch button.
9.	 Create or select your key pair by visiting the Select an existing key

pair or create a new key pair dialog box.
10.	 You will receive a confirmation page. Close it and proceed further.
11.	 Visit the Instances page and check the Public DNS.
12.	 Review the security group's rules from the instance page details.

2.	 Now, let's move on to the next step of connecting to the instance.

Remember that the Windows instance allows only two simultaneous
remote connections at any point in time.

1.	 Sign in to AWS Management Console, navigate to Amazon
EC2, select the instance, and click on Connect.

2.	 Visit the Connect To Your Instance dialog box and click on
Get password.

3.	 Click on Browse to select and copy your private key to the
box available.

Computing and Networking Services

[56]

4.	 Select Decrypt password; this will display the default admin
password, which you will require in order to connect to your
instance. So make a note of it.

5.	 Click on Download Remote Desktop File. You can choose to either
open or save the .rdp file. Once you are done, click on Close.

6.	 Connect to your instance by clicking on the Connect button.
7.	 Log in to the instance with your default admin password,

which you noted earlier.

Once every instance starts to boot, billing is done correspondingly
even if the instance is idle.

3.	 Once any instance changes its state to shutting down or terminated,
its corresponding billing will get halted. So, let's terminate our instance
as follows:

1.	 Sign in to AWS Management Console, navigate to Amazon EC2,
select the instance, and locate the instance that you wish to terminate.

2.	 Right-click on it and choose terminate.
3.	 Confirm the termination by clicking on Yes.

Linux instances
Consider that the EC2 instances (which are virtual servers in the cloud environment)
have a root volume as an Amazon EBS running a Linux server and are secured with
the corresponding key pair along with the security group, as shown in the following
diagram. Let's now take a look into the step-by-step procedure. You should use the
private key while connecting to your instance.

Instance

EBS Volume

AWS

Chapter 3

[57]

The steps to launch and connect to a Linux instance are as follows:

1.	 Launch the instance.
2.	 Connect to the instance.
3.	 Clean up.

Let's go through the preceding steps in detail:

1.	 Launch the instance in the same manner as how we launched for
the Windows instance.

2.	 Now, let's move on to the next step of connecting to the instance.
There are multiple ways to do this:

°° Connect using your browser
°° Connect from Windows using PuTTY
°° Connect from Mac or Linux using an SSH client

3.	 Let's take a look at the option of connecting via a browser. The prerequisite
for this is to have Java installed and enabled.

1.	 Sign in to AWS Management Console and navigate to Amazon
EC2, select the instance, and click on Connect.

2.	 Click on A Java SSH client directly from the browser.
3.	 The public DNS name is automatically detected and populated

while detecting the corresponding key pair as well. Then type
the Linux default username in the Username field.

For Amazon Linux, the default username is ec2-user.
For RHEL5, the username is often root but it might be ec2-user.
For Ubuntu, the username is Ubuntu. For SUSE Linux, the username
is root. Otherwise, check with your AMI provider.

4.	 Enter your private key file path in the Private key path field.
Click on Store in Browser cache to store the location of the
private key in your browser cache.

5.	 Click on No when you are prompted to add a host to your set
of known hosts.

6.	 Click on Run for certificate and accept the license agreements.
7.	 A new window opens, connecting you to your instance.

Computing and Networking Services

[58]

Let's move ahead with the cleanup procedure. Initially, terminate the instance (which
is nothing but deleting it), which enables the detachment of the volume (if you have
added any extra volume) from the instance, and then go ahead and delete the volumes.

So, terminate your instance as given in the previous Windows instances section.

Amazon VPC
Actually, Amazon VPC is a combination of two key points:

•	 This is a private, isolated section of the AWS Cloud where you can launch
the AWS resources in a virtual network that you control. If you also want
hardware isolation, there is an option known as Dedicated Instances in AWS.

•	 It provides complete control over your resources, including subnets,
route tables, ACLs, and IP addresses.

Amazon VPC supports both hardware and software VPN tunnels at the
datacenter level, and also supports client-based tunnels via software packages
such as OpenVPN.

Creating an AWS VPC
VPC provides complete control over layers of security. Let's get started with
creating your first VPC environment. Follow these steps to proceed:

1.	 Log in to the AWS console and select the VPC service.
2.	 Click on the Start VPC Wizard button to start with VPC, as shown in

the following screenshot:

Chapter 3

[59]

Once you click on the AWS VPC, you will see four options showing the different
types of VPC.

Creating a public subnet within VPC
In this chapter, you'll create a VPC with a single, public subnet. To do this, follow
these steps:

1.	 Choose the first wizard option, VPC with a Single Public Subnet, and then
click on Select, as shown here:

2.	 Review your configuration. The public subnet will have a default IP address
range of 10.0.0.0/16, which cannot be routed on the Internet.

3.	 Click on Create VPC, as shown in the following screenshot:

Computing and Networking Services

[60]

4.	 The wizard will take some time to finish its job. Once it is completed, you
will see the following screenshot:

5.	 Click on the Subnets link and check your Availability Zone, which the
wizard has picked, as shown here:

Chapter 3

[61]

6.	 From the VPC dashboard, click on the Launch EC2 Instances button and
start the EC2 Instance by clicking on Launch Instance, as shown in the
following screenshot:

7.	 Select any option for the AMI (a basic 64-bit Amazon Linux AMI),
shown as follows:

Computing and Networking Services

[62]

8.	 Change the instance type to small, micro, or any other instance type
supported in the Amazon VPC as per your requirement.

9.	 Click on the Next: Configure Instance Details button after you have
selected the appropriate option, as shown here:

10.	 In the Configure Instance page, select 10.0.0.9 as the IP address for your
instance, as shown in the following screenshot:

Chapter 3

[63]

11.	 Click on the Next: Add Storage button to move to the following screen:

12.	 If you already have a key pair created previously, you can use it, or you can
create a new one, as shown in the following screenshot:

13.	 Create your new security group, which might be the default one or the
customized one.

14.	 Add a rule for SSH (it should already be there) and also for all the ICMP
protocols. Click on Add Rule to apply the changes.

Computing and Networking Services

[64]

15.	 Then, click on Review and Launch, as shown here:

16.	 Review your settings and launch the instance to get the following page:

Chapter 3

[65]

In order to access a publicly created instance over the Internet, you need a
public IP address of this instance.

17.	 Go to the Elastic IP menu in the navigation pane on the left-hand side and
click on the Allocate New Address button. Then select VPC and click on
Yes, Allocate. That's all for now.

Creating a private subnet
Now you have to create a 10.0.1.0 subnet that is not directly connected to the
public Internet. Note the 1 in the third octet, which is different from the 0 for the
public subnet. In the VPC tab, click on Subnets and then click on Create Subnet.
Enter 10.0.1.0/24 in the address tab. Technically, the Availability Zone (AZ)
can be different from the previous one; however, using multiple AZs doesn't make
much sense when you are simply separating the public from the private. In a fully
developed implementation, you will most likely have a total of four subnets (two
sets of public/private pairs, which are visible in the background of the following
screenshot) distributed across multiple availability zones, as shown here:

Now, you can launch instances into the public or private subnets, as follows:

•	 Add public-facing instances, such as web servers, into the public-facing
subnet (10.0.0.0/24)

•	 Add backend instances that should not be reachable from the Internet,
such as database servers, into the private subnet (10.0.1.0/24)

Computing and Networking Services

[66]

Launching a database server in the private subnet
Launch another Amazon Linux instance using the previous steps, but this time
launch it into the private subnet category, which can be 10.0.1.0/24, and give it
an IP address of 10.0.1.10, for example. Check the screenshots from the previous
section to recollect what you did, if you require.

A quick question: can't you simply assign an Elastic IP address to the internal or
to the instance having a private subnet, which can be reached from the Internet?
While this seems to be a logical solution, it won't work. The reason is because the
route table associated with this subnet does not pass traffic to the Internet or from
it, as shown in the following screenshot:

You can switch route tables, at which point the Elastic IP address will start to
accept Internet traffic.

Launching an OpenVPN instance
We're going to build an OpenVPN appliance from an AMI image. To do this,
follow these steps:

1.	 In the Amazon AMIs section, search for openvpn. In this case, you will
find an image called ami-id ami-76817c1e. However, at the time when
you do this, it might not be the latest version, so choose accordingly.

Chapter 3

[67]

Make certain that you launch this AMI into the VPC using the public
subnet, as shown here:

2.	 Use 10.0.0.99 as the static IP address and name it. Ensure that you have
configured the security group with the recommended rules, as follows:

3.	 Review your configuration, accept the settings, and launch the instance.

Computing and Networking Services

[68]

4.	 To disable the source/destination, right-click on the OpenVPN instance
and select the Change Source/Dest. Check option, as follows:

5.	 Click on the Yes, Disable button to confirm, as shown here:

6.	 Allocate a new Elastic IP address to the OpenVPN server. Perform an SSH
operation to confirm whether you can ping the OpenVPN instance and SSH
into the OpenVPN server using the SSH client. Once it's completed, you need
to create a password for the openvpn user using the following command.
PROMPT> passwd openvpn

Chapter 3

[69]

7.	 Log in with the username, openvpn, and the appropriate password, as follows:

8.	 Download, install, and configure the client applicable to your platform,
as shown in the following screenshot:

9.	 Try to connect to the OpenVPN server with an address such as
http://<Elastic IP>/admin.

Computing and Networking Services

[70]

10.	 Accept the terms and conditions and then click on Agree. Click on Server
Network Settings and enter your server's public IP address, as shown in
the following screenshot:

11.	 Click on the Update Running Server button, as shown here:

12.	 To allow access to the private subnet in the VPC, click on VPN Settings.

Chapter 3

[71]

13.	 Add the private subnet to the Routing section, which will be 10.0.1.0/24 in
your case, as shown in the following screenshot:

Until now, you have done with the configuration of VPC. Now, to access your VPC
using VPN, you have to perform the ssh operation to your particular VPC-based
instance, as follows:

Computing and Networking Services

[72]

Computing and networking tools and
libraries
A software development kit (SDK or devkit) is typically a set of software
development tools that allow the creation of applications for a certain software
package, software framework, hardware platform, computer system, video
game console, operating system, or a similar development platform.

It might be something as simple as the implementation of one or more application
programming interfaces (APIs) in the form of some libraries in order to interface to
a particular programming or to include sophisticated hardware that can commune
with a meticulous embedded system. Common tools include debugging services
and other utilities frequently offered in an Integrated Development Environment
(IDE). SDKs also frequently include sample code and supporting technical notes
or other supporting documentation to help clarify points made by the primary
reference material.

SDKs might have attached licenses, which make them unsuitable for building
software intended to be developed under an incompatible license. For illustration,
a proprietary SDK will perhaps be unsuited for free software development, whereas
a GPL-licensed SDK can be unsuited with proprietary software development. LGPL
SDKs are classically safe and sound for proprietary development.

As shown in the following screenshot, you will be able to see the AWS SDK for
Java on the AWS website. By clicking on SDK for Java, you can download it.

Chapter 3

[73]

Let's understand each folder and internal files one after the other:

•	 Documentation: This folder contains all the content needed for the reference.
It has a syntax, package, structure, and description of each class/method.
Using this documentation, we are able to understand the given underlying
class/method, and we can use them in our own library.

•	 Lib: This folder contains the .jar files that are necessary to start
the development of AWS using your Java code. It also contains
other .jar files such as:

°° aws-java-sdk-<version>.jar: This contains all the classes
required for AWS development, ex-AWS Authentication, and so on,
which are commonly used to execute all command-level operations
from the command prompt. It can only be executed once they are
configured in the environment variables.

°° aws-java-sdk-<version>-sources.jar: While creating the code,
if you want to attach source files for reference, you can only do that
using this file. You will see this runtime with Eclipse to configure
the source with the code.

There is one Javadoc.jar file that keeps the documentation for all AWS
classes. Since it is optional, it's upon developers whether they want to keep
them for reference.

•	 Samples: This folder contains the sample programs for a quick understanding
of the code and its nature. In general, it's not easy to adapt new classes without
understanding their basic flow. This code will give you a hands-on exercise.
The following basic available examples are included:

°° Amazon-DynamoDB
°° Amazon-EC2SpotInstances-GettingStarted
°° Amazon-EC2SpotInstances-Advance
°° Amazon-Kinesis
°° Amazon-Kinesis-Application
°° Amazon-s3
°° AmazonS3TransferProgress
°° AmazonSimpleEmailService
°° AmazonSimpleQueueService
°° AwsCloudFormation
°° AwsConsoleApp
°° AwsFlowFramework

Computing and Networking Services

[74]

•	 Third-party: This folder contains the following third-party AP that can be
helpful while code structuring:

°° aspectj-1.6
°° commons-codec-1.3
°° commons-logging-1.1.1
°° freemarker-2.3.18
°° httpcomponents-client-4.2.3
°° jackson-annotations-2.1
°° jackson-core-2.1
°° jackson-databind-2.1
°° java-mail-1.4.3
°° joda-time-2.2
°° spring-3.0
°° stax-api-1.0.1
°° stax-ri-1.2.0

You can also add your own components, such as jQuery or others, for useful purposes
and a strong adaptability. This was all about the AWS SDK structure. Later, while
executing the examples, you will see its usage and will gain an in-depth understanding
of the flow and its components. Let's discuss the various features of AWS:

•	 The AWS toolkit: This toolkit, for Eclipse, is an open source plugin for the
Eclipse Java IDE, which makes it easier for developers and code integrators
to develop, debug, integrate, migrate, and deploy Java-based applications
that use the Amazon web services resources platform. There are some
extraordinary functions/features that make the Amazon platform best
suitable for developers, for example, the AWS Explorer.

•	 The AWS Explorer: This enables you to interrelate many of the AWS services
from inside the Eclipse IDE. The AWS Explorer supports managed data
services such as Amazon Simple Storage Service (S3), Amazon SimpleDB,
Amazon Simple Notification Service (SNS), and Amazon Simple Queue
Service (SQS). The explorer also provides the right to use the Amazon Elastic
Compute Cloud (EC2) management and deployment functionality to AWS
Elastic Beanstalk using the SDK or API. AWS Explorer supports multiple AWS
accounts; you can easily change the resources displayed in it from one account
to another. It also enables supporting functionality, such as the ability to create
and manage key pairs and security groups.

Chapter 3

[75]

The AWS Toolkit for Eclipse will install and configure the latest version of the
AWS SDK for any platform you have selected. From Eclipse, you can easily manage,
customize, build, and deploy any of the samples included in the SDK packages,
as follows:

1.	 Go to aws-amazon.com/sdk-for-java.
2.	 As shown in the following screenshot, click on AWS Toolkit for Eclipse:

3.	 There is another alternative way to configure this. Download Eclipse
Juno/Luna+ from https://www.eclipse.org/downloads/.

4.	 Start Eclipse.
5.	 Click on Help and then click on Install New Software.
6.	 In the Work with field, type http://aws.amazon.com/eclipse

and then press the Enter key.
7.	 In the list that appears, expand AWS Toolkit for Eclipse.
8.	 Add a checkmark next to AWS Toolkit for Eclipse in order to download it.
9.	 Click on Next; the Eclipse wizard will, by default, take you through the

installation procedure.

To admission AWS through the toolkit for Eclipse, you have to configure the Eclipse
toolkit with your access key ID and secret access key, which should be available
in your AWS account. In addition to allowing the toolkit for Eclipse to access your
account, your access keys are used to sign requirements based on web services
to AWS. By allowing web service requests, AWS ensures that only the approved
programs can make such requests. Moreover, by associating access keys with each
web service request, AWS will be able to track the service usage for billing purposes
and monitoring.

Computing and Networking Services

[76]

The access keys will have a combination of an access key ID and a secret access key,
which will be used to sign a programmatic logical request that you will compose
from the application source code to AWS for accessing resources. If you don't have
access keys, you can create their keys from the AWS Management Console too. For
this, go to Security Credentials and select Access Key ID from the options available,
as shown in the following screenshot:

Keep it confidential in order to guard your account and don't e-mail it at all. Do not
share it with a third person from your organization, even if any investigations come
from AWS or from any other channel.

To deploy the web application, follow these steps:

1.	 In the Eclipse toolbar, click on the AWS icon, and then click on AWS
Java Web Project, as shown in the following screenshot:

Chapter 3

[77]

2.	 In the New AWS Java Web Project dialog box, at the top of the dialog box,
select AWS_Proj, which is a sample Java web application, and enter the
name AWS_Proj in the Project name box.

3.	 Click on the Finish button. The toolkit will create the project, and the
project will be shown in Project Explorer.
If Project Explorer is not visible in Eclipse, under the Window menu,
click on Show View and select Project Explorer, as shown here:

4.	 Now click on Libraries and then click on Add External Jars.

Computing and Networking Services

[78]

5.	 Select the path of aws-java-sdk.jar, as shown here:

6.	 Select the .jar file, as follows:

Chapter 3

[79]

7.	 Now you will be able to access the AWS classes of your Java project.
8.	 Create a new class, Hello, in the package, com.test, as shown in the

following screenshot:

As you can see, you can now access the classes of AWS in our Java class and based
on that, you can create your own examples. Let's try out one example here to start
our instance programmatically:

1.	 Create a new class named Main.java, as follows:
private Logger log = Logger.getInstance(Main.class);

private String accessKey = "YOUR ACCESS KEY";
private String secretKey = "YOUR SECRET KEY" ;
private AWSCredentials credentials;
private String endPoint ;
private Region region ;
private AmazonEC2Client ec2client ;

private String groupName = "uchitec2securitygroup";
private String groupDescription = "This is description";

private String sshIpRange = " IP/32";
private String sshprotocol = "tcp";
private int sshFromPort = 22;

Computing and Networking Services

[80]

private int sshToPort =22;

private String httpIpRange = "0.0.0.0/0";
private String httpProtocol = "tcp";
private int httpFromPort = 80;
private int httpToPort = 80;

private String httpsIpRange = "0.0.0.0/0";
private String httpsProtocol = "tcp";
private int httpsFromPort = 443;
private int httpsToProtocol = 443;

private String keyName = "uchitkeypair";
private String pemFilePath = "PATH TO SAVE PEM FILE"; //
/Users/uchit/Desktop
private String pemFileName = "uchit_keypair.pem";

private String imageId =" ami-018c9568";
private String instanceType ="m1.small";
private String instanceName = "uchitm1small";

2.	 Initialize a method to create an object that will have the credentials
AmazonEC2Client; also, you have to set an endpoint and a region for
your ec2client using the following code:
private void init(){
 credentials = new BasicAWSCredentials(accessKey,
secretKey);

endPoint = "https://rds.ap-southeast-1.amazonaws.com";

 region = Region.getRegion(Regions.AP_SOUTHEAST_1);
 ec2client = new AmazonEC2Client(credentials);
 ec2client.setEndpoint(endPoint);
 ec2client.setRegion(region);
}

3.	 Create a security group using the following code snippet:
private void createEC2SecurityGroup(){
 try {
 log.Info("Create request for security group");
 CreateSecurityGroupRequest createSecurityGroupRequest =
new CreateSecurityGroupRequest();
 createSecurityGroupRequest.withGroupName(groupName)
 .withDescription(groupDescription);

Chapter 3

[81]

 createSecurityGroupRequest.setRequestCredentials(credential
s);
 CreateSecurityGroupResult csgr =
ec2client.createSecurityGroup(createSecurityGroupRequest);

 String groupid = csgr.getGroupId();
 log.Info("New Security Group Id : " + groupid);

 log.Info("Security Group Permission");
 Collection<IpPermission> ips = new ArrayList<IpPermission>();

 IpPermission ipssh = new IpPermission();
 ipssh.withIpRanges(sshIpRange).withIpProtocol(sshprotocol)
 .withFromPort(sshFromPort).withToPort(sshToPort);
 ips.add(ipssh);

 IpPermission iphttp = new IpPermission();
 iphttp.withIpRanges(httpIpRange).withIpProtocol(httpProtocol)
 .withFromPort(httpFromPort).withToPort(httpToPort);
 ips.add(iphttp);

 IpPermission iphttps = new IpPermission();
 iphttps.withIpRanges(httpsIpRange).withIpProtocol(httpsProtocol)
 .withFromPort(httpsFromPort).withToPort(httpsToProtocol);
 ips.add(iphttps);

 AuthorizeSecurityGroupIngressRequest
authorizeSecurityGroupIngressRequest = new
AuthorizeSecurityGroupIngressRequest();
 authorizeSecurityGroupIngressRequest
 .withGroupName(groupName).withIpPermissions(ips);
 ec2client.authorizeSecurityGroupIngress(authorizeSecurityGroupIn
gressRequest);

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
}

4.	 To create a key pair, use the following code:
private void createKeyPair(){
 try {
 CreateKeyPairRequest ckpr = new CreateKeyPairRequest();

Computing and Networking Services

[82]

 ckpr.withKeyName(keyName);

 CreateKeyPairResult ckpresult =
ec2client.createKeyPair(ckpr);
 KeyPair keypair = ckpresult.getKeyPair();
 String privateKey = keypair.getKeyMaterial();
 log.Info("KeyPair will be :" + privateKey);
 writePemFile(privateKey,pemFilePath,pemFileName);
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
}

5.	 Create an on-demand instance using the following code snippet:

private void createEC2OnDemandInstance(){
 try {

 RunInstancesRequest uv = new RunInstancesRequest();
 uv.withImageId(imageId);
 uv.withInstanceType(instanceType);
 uv.withMinCount(1);
 uv.withMaxCount(1);
 uv.withKeyName(keyName);
 uv.withMonitoring(true);
 rir.withSecurityGroups(groupName);

 RunInstancesResult riresult = ec2client.runInstances(uv);
 log.Info(riresult.getReservation().getReservationId());

 String instanceId=null;
 DescribeInstancesResult result =
ec2client.describeInstances();
 Iterator<Reservation> i =
result.getReservations().iterator();
 while (i.hasNext()) {
 Reservation r = i.next();
 List<Instance> instances = r.getInstances();
 for (Instance ii : instances) {
 log.Info(ii.getImageId() + "t" + ii.getInstanceId()+
"t" + ii.getState().getName() + "t"+
ii.getPrivateDnsName());
 if (ii.getState().getName().equals("pending")) {

Chapter 3

[83]

 instanceId = ii.getInstanceId();
 }
 }
 }

 log.Info("New Instance ID will be:" + instanceId);

 boolean isWaiting = true;
 while (isWaiting) {
 log.Info("we are Waiting");
 Thread.sleep(1010);
 DescribeInstancesResult r = ec2client.describeInstances();
 Iterator<Reservation> ir= r.getReservations().iterator();
 while(ir.hasNext()){
 Reservation rr = ir.next();
 List<Instance> instances = rr.getInstances();
 for(Instance ii : instances){
 log.Info(ii.getImageId() + "t" + ii.getInstanceId()+
"t" + ii.getState().getName() + "t"+ ii.getPrivateDnsName());
 if (ii.getState().getName().equals("running") &&
ii.getInstanceId().equals(instanceId)) {
 log.Info(ii.getPublicDnsName());
 isWaiting=false;
 }
 }
 }
 }

 CreateTagsRequest crt = new CreateTagsRequest();
 ArrayList<Tag> arrTag = new ArrayList<Tag>();
 arrTag.add(new Tag().withKey("Name").withValue(instanceName));
 crt.setTags(arrTag);

 ArrayList<String> arrInstances = new ArrayList<String>();
 arrInstances.add(instanceId);
 crt.setResources(arrInstances);
 ec2client.createTags(crt);

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
}

Computing and Networking Services

[84]

Summary
We started the chapter by discussing the basics of EC2 and how the Windows and
Linux instances differ from each other. Then, we discussed the differences between
an EBS backed instance and an instance store-backed instance. In the Best Practices
section, we discussed the best practices and tools that can be used to access the EC2
instances. Then we dedicated the rest of the chapter to VPC. We started this section
by creating a public VPN subnet and then we added an Amazon AMI instance to
the VPC created by us. Then we assigned a static IP and set up a VPN client to access
our VPC instances using openVPN. We concluded the chapter by connecting to our
Amazon AMI instance created in our VPC. In the next chapter, you will learn about
AWS-managed services and databases. You will get a basic understanding of how
AWS manages the resources effectively and accurately. Later on, you will learn
about the database services provided by AWS.

Managed Services and
the Databases

A database is a critical part of any application. It is also a single point of failure; that is,
if the database fails because of any hardware or network issues, then the application
will become inaccessible. So, managing the database is a very big responsibility and
small-scale or start-up companies will have to allocate a high-end server to host the
database server. Database services offered by AWS are not only used by start-up
companies but also by bigger organizations, as these databases are fully managed by
Amazon. So Amazon will take care of the updating, patch installation, and backup of
the database software. AWS offers four different kinds of databases. Out of these, two
will be taken as part of the discussion in this chapter. First, you will learn about all the
key aspects of DynamoDB—a NoSQL database fully managed by Amazon—and then
move your focus to Relational Database Service (RDS), which is used to create, run,
and manage RDBMS servers on Amazon.

In this chapter, you will learn the following topics:

•	 The importance and usage of DynamoDB
•	 Understanding the key aspects of RDS
•	 Working with an RDS instance
•	 The usage of DynamoDB and RDS tools and libraries

Managed Services and the Databases

[86]

Amazon DynamoDB
DynamoDB is a NoSQL database fully managed by Amazon, and it is available as
a web service. It is available as a free tier and allows you to store up to 100 MB of
data, five units of write capacity, and 10 units of read capacity (which counts up to
12 million writes and 24 million reads) per month. DynamoDB is well-suited as a
backend for scalable applications which require fast-growing data from a database
(hosting millions of tables with an increasing number of rows) to be accessed at a
very high speed. Every table created by you can have different access speeds. In
simple words, the user can decide to have one or more tables accessed at a very
high speed and other tables to be accessed at a lower speed. There is a term called
provisioned throughput capacity, which decides the data access speed of the table.

The provisioned throughput capacity is a measure of how much speed
you can expect from a DynamoDB table. This is usually measured
in KBs per second. For example, if you set the read capacity unit (or
the provisioned throughput capacity) as 5, it means that the table can
respond to the scan or query operation at a speed of no less than 5 KB
per second.

This throughput value can range from 1 to 10,000. However, a higher value means
more speed and more cost. In order to make the retrieval faster, the table data will
be partitioned (based on the Hash key value), and each partition might reside on
a different (or the same) server to achieve the specified throughput capacity. This
process of partitioning the table based on the Hash key value is called sharding.
DynamoDB also provides a provision to read the data in two consistent (eventual
and strong) ways.

Table operations
We can find the DynamoDB service in the Database section of the Management
Console, as shown in the following screenshot; the highlighted section shows four
services, out of which DynamoDB and RDS are going to be part of the discussion
in this chapter:

Chapter 4

[87]

Clicking on the DynamoDB option (in the preceding screenshot) will take you to the
following Amazon DynamoDB Getting Started screen. To the right-hand side of the
account name (at the top), Prabhakar, you can select the region in which you need
the table to be created, as shown in the following screenshot:

Managed Services and the Databases

[88]

The preceding screenshot shows the following four sections:

•	 Section 1: This section, in the top-left corner, provides information such
as where the tables will be created (this can be changed by clicking in the
top-right corner of the page where N. Virginia is seen) and provides a
button to create the DynamoDB table

•	 Section 2: This section, in the bottom-left corner, displays the steps
involved in table creation

•	 Section 3: This section, on the right-hand side, provides additional useful
links to get further information on DynamoDB

•	 Section 4: This section consists of a video that depicts the advantages
of DynamoDB

You need to click on the Create Table button in Section 1 to create your first
DynamoDB table. Then you need to follow these five steps to configure your
table that is being created:

1.	 Define a primary key for the table.
2.	 Add indexes (secondary) to the table.
3.	 Configure a provisioned throughput capacity for the table.
4.	 Set throughput alarms so that an e-mail or notification will be sent once

your application requires or consumes more than 80 percent (this can be
changed) of the throughput capacity.

5.	 Show the summary of the table.

Chapter 4

[89]

If you feel that any value is not what you intended, you can click on Back and go
back to the necessary step and make the changes. The following screenshot shows
the final step:

The preceding summary page shows you the following information; all the
information is made available in this table:

Attribute Data type Attribute type Table/index
hashKey String Hash key The table's

primary key
attributes

rangeKey Number Range key

indexHash String Hash key
Global index

secondaryRange String Range key
indexRange String Range key Local index
Other optional attributes

Managed Services and the Databases

[90]

Now it's time to discuss the primary key attributes. The Hash and Range keys are
the two attribute types that act as the (compound) primary key. The Range key must
be accompanied by the Hash key, but the Hash key can optionally be accompanied
by the Range key. The Hash key is an attribute type that every table must have. The
Hash key is an unordered collection of items; this means that the items with the same
Hash key values will go to the same partition, but there won't be any ordering based
on these Hash keys. Whereas, on the other hand, items will always be ordered on
their Range key values (but grouped with the Hash key values).

Neither the Hash key nor the Range key can be of any complex
type (the set type).

Once you review the table creation and click on the Create button, the following
page will be displayed. This page will have three sections. Section 2 shows
information about the table schema, throughput values, and its status (you can see
that the table is in the CREATING status). Once the table's status becomes ACTIVE,
then you can perform I/O operations. Section 1 has seven buttons to perform I/O
operations on DynamoDB. Section 3 provides additional information such as the
read/write speed, alarm status, and so on.

After a few minutes, the table will become ACTIVE (as shown in the following
screenshot). Now it's time to discuss these seven buttons to perform I/O operations:

•	 Explore Table: This button opens a page (as shown in the following
screenshot) that allows you to perform the query/scan operation or
insert a new item in the table.

Chapter 4

[91]

•	 Create Table: This button, as the name suggests, takes you through the five
steps used to create a table (which we have already discussed).

•	 Modify Throughput: This button helps you to modify the throughput values
for the selected table. This is the only feature of the table that you can modify
at any point in time.

•	 Delete Table: This button deletes the selected table.
•	 Export / Import: This button allows you to read or write data to and from

the S3 files or CSV files that are stored locally.
•	 Access Control: This button will restrict the user access to the table based on

the IAM rules (for operations) specified for the user and for web applications
such as Facebook.

•	 Purchase Reserved Capacity: This button is used to purchase the minimum
provision capacity expected from Amazon DynamoDB for a period of 1 year
or 3 years. Every month, irrespective of whether you use this capacity or not,
the money will be deducted from your credit card. Even then, one advantage
of this approach is the discount (from 53 percent to 76 percent) offered
by Amazon.

The following screenshot displays all seven buttons:

Item operations
After clicking on Explore Table, click on the New Item button to insert an item,
as shown in the following screenshot:

Managed Services and the Databases

[92]

Clicking on the New Item button will open the following window:

The mandatory attributes, Name and Type, will already be populated and you cannot
change them. However, you can add the attribute values (which must be unique). In
addition to this, you can simply click on the empty textboxes (below the Hash and
Range key attribute names) to add an item-specific attribute name, type, and value.
In the case of entering a set (NumberSet for the numberSet attribute), specify multiple
numbers by clicking on the + symbol to the right-hand side of the value textbox. After
entering all the attributes, click on the PutItem button, which will put this item in
the table.

To view the inserted item, click on the Browse Items tab, select the Scan radio
button, and then click on the Go button. Now you will be able to see the table's
contents. In addition to this, you can perform four more item operations, which
are highlighted in the following screenshot:

Chapter 4

[93]

The scan operation will read the contents of the entire table's items. So, if the table
has millions of items, then a single scan operation can cost you more capacity units
(even though it returns a maximum of 1 MB of data at a time, it might scan all the
non-returned items too). Always try to use a query operation instead of a scan.

In the Explore Table page, clicking on the Query radio button will open up the
following options. If you recall, your table (dynamodb_table) has three indexes.
The first index is the primary index created based on the primary key attributes,
the second is the local secondary index, and the third is the global secondary index.
Based on the type of index you choose, the Hash Key and Range Key dropdowns
will be populated, as shown in the following screenshot. We can perform only the
equal to operations on the Hash key and perform all kinds of comparison and between
operations on the Range key.

Once you are done with the table, you can delete it. This action will open up a
window with the following options. The first checkbox is a must if you want
to delete the table schema and its items. The second checkbox will delete all the
alarms for the table, and the third checkbox will delete the data import/export
pipelines for the table being deleted.

Managed Services and the Databases

[94]

Best practices for DynamoDB
There are a lot more things to be done with DynamoDB, so you will see some of
the best practices while using secondary indexes with DynamoDB. While deciding
the attributes to be projected in the global secondary index, there are tradeoffs that
you must consider between the provisioned throughput and storage costs. A few
of them are listed as follows:

•	 If your application doesn't need to query a table so often and it performs
frequent writes or updates against the data in the table, then you must
consider projecting the KEYS_ONLY attributes. The global secondary index
will be of a minimal size, but it will still be available when needed for the
query activity.

•	 The smaller the index, the lesser the cost to store it, and your write costs
will be less too. If you need to access only a few attributes with the lowest
possible latency, then you must project only those (lesser) attributes in a
global secondary index.

•	 If you need to access almost all the non-key attributes of the DynamoDB
table on a frequent basis, you can project these attributes (even the entire
table) to the global secondary index. This will give you the maximum
flexibility with the tradeoff that your storage cost will increase or even
double if you project the entire table's attributes into the index.

•	 The additional storage costs to store the global secondary index might
equalize the cost of performing frequent table scans. If you frequently
retrieve some non-key attributes, you must consider projecting them
in the global secondary index.

There are four rules to be followed when creating the secondary index, so that your
table will function without any hiccups. These rules are as follows:

•	 Distribute the load by choosing the correct Hash key attribute
•	 Make use of the sparse index
•	 Use the global secondary index for a quicker retrieval
•	 Creation of the read replica

Amazon RDS
As the name suggests, RDS helps you to configure, set up, operate, and scale a
relational database in the Amazon Cloud. As of now, RDS supports MySQL, SQL
Server, PostgreSQL, and Oracle. You can either use the open license provided by
the vendor or, if you have your own license, you can use the same in RDS.

Chapter 4

[95]

Amazon provides a wide range of server configurations in which you can run your
RDS instance. Your instance can start with the db.t1.micro instance with 1 core, 0.613
GiB RAM and extend up to db.cr1.8xlarge with 32 core, 244 GiB RAM. You can also
deploy your RDS instance replica across multiple zones. This is for disaster recovery.
This read replica will act as a backup. RDS also provides hundreds of thousands of
I/O Operations Per Second (IOPS).

In RDS, whenever a new version of your database is available, you don't have
to delete or migrate your database. This will be automatically done by Amazon.
Another important feature with RDS is its ability to work with VPC. If you do
so, then it will act as a two-level security that all the connections to the database
must authenticate with the VPN gateway first and then with the database server.
In addition to this, you can also allow a connection (inbound and outbound,
separately) only through the specified ports.

Instance creation
Once you click on the RDS option in the Management Console, the following
page will be displayed. It will have three important sections, which I have tagged
as Dashboard, Resources, and Information. The Dashboard section has links that
can be used to perform a few frequent RDS management operations. The Resources
section gives you the information on the RDS resources that are used by you in the
selected region. The Information section consists of links to the RDS documentation
and a reference to perform frequent RDS operations. To create your first RDS DB
instance, click on the Launch a DB Instance button.

Managed Services and the Databases

[96]

We will then be taken to the following Select Engine page, where you can choose the
kind of relational database required from Amazon. We can choose any one of the four
databases. Each of these will have several other distributions. For this discussion, select
MySQL and click on the Select button, as shown in the following screenshot:

MySQL is simple and easy to configure; it has a lot of connectors available and one
of the famous free database software that you will use in the primary discussion.
The second step is called the Deployment step. Here, you can choose the first radio
button if you want this RDS instance to be of production or deployment standards. If
you choose this option, then your MySQL instance will be made available in multiple
availability zones in order to make the instance highly available. One more advantage
of using this option is the use of IOPS, which makes your database faster by sticking
to the selected number of IOPS values, as shown in the following screenshot:

Chapter 4

[97]

Selecting the second radio button will make the instance available in a normal
environment. If you don't want to pay too much, then you must choose the second
radio button (the tradeoff is the slowness, and sometimes the database might become
unavailable) because the first option won't come under the free tier. Here, you can
proceed by selecting the second option and continue by clicking on the Next button.

The third step is used to configure the MySQL instance version and its credentials.
Here, select the 5.6.17 Version to be made available in the db.t1.micro instance type
with a maximum storage capacity of 5 GB. We have also specified the instance
identifier (used to identify the instance in the Management Console), username,
and password to access this instance, as shown here:

The next page will let you configure some of the advanced settings. This page has
the following three sections:

•	 Network & Security: This section is used to select the VPC in which you
want these MySQL instances to be hosted. We can also select the subnet
(because a single VPC will have one or more subnets) and decide whether
the instance should be available to the general public or not. If you select
No in this dropdown, then you can access this instance only through the
VPN gateway. It's secured to make this value No, but changing it to Yes
will make it easily accessible. We can also specify the availability zone in
which this instance has to be made available.

•	 Database Options: This section is used to create a database (here, you
create a database named mysqlDB1) in the MySQL instance. You also
need to specify the port in which you want the MySQL daemon to run.
Then you can use the security group for this instance.

Managed Services and the Databases

[98]

•	 Backup and Maintenance: This section is used to specify the maximum
duration within which the instance modification (such as upgrading the
MySQL instance version) should happen. The smaller the value, the better
will be the instance available. Another operation that you can perform is
setting up whether the MySQL version should be upgraded automatically.

Selecting the correct VPC is the key here. We can choose a VPC only if it has at least
one subnet in all the availability zones. Otherwise, you cannot proceed with the DB
instance creation. One more thing about the VPC Security Groups is that they should
allow the incoming connection to (at least) the port 3306 or any other ports on which
MySQL is running. A database port can be any port number. However, you need to
make sure that the port is not preoccupied by the operating system, as shown here:

After setting the optimal values, you can proceed by clicking on the Launch DB
Instance button, which will take you to the next page; this page will ask you
to wait until the DB instance becomes available.

If there are some issues with the configuration then you won't be able to see the
green tick mark. You can click on the link just below the green tick mark to look
at all your DB instances.

Chapter 4

[99]

In the RDS dashboard, the Instances page will show you all the RDS instances that
have been provisioned in this region, as you have requested for the MySQL instance
with the identifier Prabhakaran on the db.t1.micro instance with 5 GB of storage on
the VPC, vpc-7b60961e, and with the kuppu database username. Initially, the status
of the instance will be creating, as shown in the following screenshot. After a few
minutes, the status will be updated to available.

Managed Services and the Databases

[100]

Also, at this point in time, the endpoint will not be available. It will only be available
after the instance becomes available.

Once the instance becomes available, you will be able to see the MySQL DB
instance's endpoint. Here, the instance's endpoint is prabhakaran.cde8s5btscuk.
us-west-2.rds.amazonaws.com:3306, where prabhakaran.cde8s5btscuk.us-west-2.
rds.amazonaws.com is the hostname and 3306 is the port through which you can
communicate with the instance, as shown in the following screenshot:

Connecting to the RDS DB instance
We are going to use MySQL Workbench 6.1 CE for the discussion. This can
be downloaded from http://cdn.mysql.com/Downloads/MySQLGUITools/
mysql-workbench-community-6.1.7-win32.msi, and it is available as a
freeware. After installation, proceed with the following steps:

1.	 Click on the add connection button to specify the connection parameters
of your MySQL instance, as shown in the following screenshot:

Chapter 4

[101]

2.	 Clicking on the add connection button will open Setup New Connection.
Here, the Connection Name option can be anything (it is only for
identification). The Connection Method field should be Standard (TCP/IP).
Then select the Parameters tab and specify the Hostname and Port fields,
which you obtained from the RDS dashboard. The Username field must
be the same as the one configured with the instance. To set Password, click
on the Store in Vault button, which will open a window that allows you
to enter and store it securely. Then, in the Default Schema textbox, you can
either specify mysqlDB1 (which you created while creating this MySQL RDS
instance) or you can leave it blank, as shown here:

3.	 You can click on the Test Connection button to check whether your RDS
instance is reachable. If the parameters are correct, then you will see the
following response. Otherwise, you have to check either the connection
parameters or the VPC subnet in which the RDS instance is made available,
and an important thing is to check whether the instance is running.

Managed Services and the Databases

[102]

4.	 After testing the connection parameters, if you click on OK, these connection
parameters will be added to your workbench home page (as shown in the
following screenshot) with the name specified in the Connection Name field:

5.	 All you need to do is click on the shortcut created for your database
connection. It will connect you to your DB instance and open the following
page. Here, you can execute the query by writing it in the Query 1 tab
(where show databases is currently written) and clicking on the execute
query button. Then, you will be able to see the output below (just below
the Query 1 tab where mysqlDB1 is highlighted).

Chapter 4

[103]

6.	 If you want to see the status of the MySQL DB instance, which you have
borrowed from Amazon, then you can click on the Server Status link
available in the MANAGEMENT section (on the top-left hand side).
This will show you the following page:

7.	 After making sure that everything is working perfectly, you can write some
code to establish a connection to your MySQL RDS instance. The JDBC code
will create a table named RDStable and insert three rows and queries for the
number of rows in the table, as shown here:

Managed Services and the Databases

[104]

Therefore, the RDS instance created by you will function as an ideal MySQL server
that is running and dedicated to you. The good news is that you can keep one RDS
instance running continuously without paying a single dollar to Amazon (without
using the Multi-AZ deployment, IOPS, and the low-end db.t1.micro instance).

Database tools and libraries
We have installed and configured the Eclipse plugin and the AWS SDK tools in
Chapter 1, An Introduction to AWS. In the Table operation and Item operation section,
you have performed DynamoDB operations using the Management Console.
However, for advanced users to perform advanced operations, the Management
Console is not enough. Therefore, in this section, you are going to learn about
DynamoDB interactions through the Eclipse plugin and the AWS SDK tool. Along
with the Management Console, DynamoDB supports lots of tools and libraries.
Another important DynamoDB tool is DynamoDB local. We can easily create tables,
indexes, attributes, and items with it. After doing all of these offline, you can commit
or save to AWS DynamoDB. This is the usage of DynamoDB local.

In case you are developing a web application (let's say, a JSF application) and
decide to use DynamoDB as the database, the biggest challenge will be to integrate
DynamoDB with Java. This is where the SDK comes into the picture. By importing
and including certain DynamoDB libraries, you can play with DynamoDB using a
simple Java code.

Creating your first SDK project
If you have already installed the Eclipse plugin, as mentioned in Chapter 1, An
Introduction to AWS, you will be able to see the credentials file created correctly
and then you are ready to start using SDK. To do this, follow these steps:

1.	 Click on the AWS toolkit for the Eclipse icon; this will provide you with the
option to create a new AWS project, as shown in the following screenshot:

Chapter 4

[105]

2.	 Here, you need to select New AWS Java Project. Clicking on this option for
the first time will give you a few sample codes from AWS and will ask you
whether you want these sample codes to be part of the project.

3.	 Check the Amazon DynamoDB Sample checkbox for the first time to
understand the syntax of the DynamoDB table operations.

4.	 Once done, select the AWS account that is already configured or configure a
new AWS account.

5.	 Click on the Next button to proceed, as shown here:

6.	 Clicking on the Next button will create a new project with the name specified
in the preceding screenshot. In the src folder of the project, the credentials
file will be made available by default. The sample DynamoDB code will also
be available in the default package of this src folder under a file named
AmazonDynamoDBSample.java, as shown in the following screenshot:

Managed Services and the Databases

[106]

Since the sample code is provided by AWS, I don't want to get into trouble
by providing the code here. So we will see what this sample code does. First
and foremost, it creates a table named my-favorite-movies-table in the
US_WEST_2 region. Once you run this code, you need to open the AWS
Explorer and refresh Amazon DynamoDB, as shown in the following screenshot:

Make sure that you're selecting the correct region (US_WEST_2) in the AWS
Explorer; otherwise, you will not see the table getting created.

Double-clicking on the table name will open the following window, showing the
contents of the table:

In this table, name is the only key attribute of the String type. The fans attribute is
of the StringSet type. The rating attribute is of the String type, and year is of the
Number type.

The sample code provided will not have the code to create any indexes. In the
following topics of this chapter, we will discuss everything in detail. First, you will
create a new class named AwsSdkDemo in the same project.

In this DynamoDB class (named AwsSdkDemo), you are going to perform the
following DynamoDB operations:

•	 Initialize your AWS credentials
•	 Define the table attributes
•	 Define the key schema (of the table and indexes)
•	 Define the provisioned throughput

Chapter 4

[107]

•	 Create the table with the preceding parameters
•	 Describe the table
•	 Add (insert) items to the table

Java SDK operations
There are five user-defined private functions that are being invoked in the following
code; we will see each and every function in detail:

public class AwsSdkDemo {
static AmazonDynamoDBClient client;
initializeCredentials();
String tableName = "dynamodb_table";
if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}
else {
 ArrayList<AttributeDefinition> attributeDefinitions =
 getTableAttributes();
 ArrayList<KeySchemaElement> keySchemaElements =
 getTableKeySchema();
 ProvisionedThroughput provisionedThroughput =
 getProvisionedThroughput();

 CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput);
 CreateTableResult result = client.createTable(request);

 Tables.waitForTableToBecomeActive(client, tableName);
 TableDescription tableDescription = client.describeTable(
new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

 System.out.println("Created Table: " + tableDescription);
 putItems(tableName);
}}

The first method, initializeCredentials, is used to load your AWS credentials
and authenticate you to AWS for running the program in order to perform the
DynamoDB operation.

Managed Services and the Databases

[108]

For all kinds of DynamoDB operations that you wish to perform, it must be done
through the following client:

static AmazonDynamoDBClient client;

The following block of code will initialize the table name to the local variable. Then,
the if condition will check whether the table already exists with this name (in the
client-configured region) and returns a Boolean value. If the table already exists, then
the SYSO message will be printed.

String tableName = "Tbl_Book";
if (Tables.doesTableExist(client, tableName)) {
 System.out.println("Table " + tableName + " already EXISTS");
}

The following block of code will create a CreateTableRequest method
with attributes such as TableName, AttributeDefinitions, KeySchema,
provisionedThroughput, and indexes:

CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchemaElements)
 .withProvisionedThroughput(provisionedThroughput);

The following line will submit the table creation request through the
DynamoDB client:

client.createTable(request);

The following line of code will pause the further execution of the code until the
table becomes active (it is most probably used before putting items in the table):

Tables.waitForTableToBecomeActive(client, tableName);

The following code will request to describe the table name passed as a parameter
to the client:

client.describeTable(new DescribeTableRequest()
 .withTableName(tableName))
 .getTable();

The following code will update a table with the passed UpdateTableRequest instance:

client.updateTable(updateTableRequest);

Chapter 4

[109]

The default location of the credential file is $USER_HOME/.aws/credentials.
However, you have to keep your credentials file at $USER_HOME/.aws/config, so
that the SDK can easily identify it. The following different operations are performed
by the various lines of the code:

•	 The first line of the try block will load the default AWS credentials
•	 The next line will configure the DynamoDB client with the loaded credential
•	 The next line will initialize the region to US_WEST_2, which is Oregon
•	 The last line of the try block will set the region for the DynamoDB client to

US-WEST-2

In the case of an improper location of the credential file, the following exception will
be thrown:

private static void initializeCredentials() throws Exception {
AWSCredentials credentials = null;
try {
 credentials = new
 ProfileCredentialsProvider().getCredentials();
 client = new AmazonDynamoDBClient(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 client.setRegion(usWest2);
} catch (Exception e) {
 throw new AmazonClientException(
 "Invalid location or format of credentials file.",e);
}
}

The following function will prepare an ArrayList method, which adds all the
AttributeDefinition methods to it. Each AttributeDefinition method will
take two parameters: first is the attribute name and the second is the attribute type.
In the following code, we are defining the two attributes:

private static ArrayList<AttributeDefinition> getTableAttributes() {
 ArrayList<AttributeDefinition> attributeDefinitions = new
 ArrayList<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("hashKey")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("rangeKey")
 .withAttributeType("N"));
 return attributeDefinitions;
}

Managed Services and the Databases

[110]

The following method will return an ArrayList of the KeySchemaElement type. Inside
this function, you are instantiating an ArrayList method of the KeySchemaElement
type. To the ArrayList method, you are adding two KeySchemaElement elements.
The first element is to set the hashKey attribute as the HASH key type, and the second
element is to set the rangeKey attribute as the RANGE key type. Finally, you are
returning the following ArrayList:

private static ArrayList<KeySchemaElement> getTableKeySchema() {
 ArrayList<KeySchemaElement> ks = new
 ArrayList<KeySchemaElement>();
 ks.add(new KeySchemaElement()
 .withAttributeName("hashKey")
 .withKeyType(KeyType.HASH));
 ks.add(new KeySchemaElement()
 .withAttributeName("rangeKey")
 .withKeyType(KeyType.RANGE));
 return ks;
}

In the following function, we will try to put items (item1 of the type Map<String,
AttributeValue>) in the table (the table's name is taken as the input parameter).
As we have discussed previously (in the getTableKeySchema method), every item
must have the primary key attributes (hashKey and rangeKey). Both the items now
have these two attributes.

In the first item (item1), including the primary key attributes, you will add two more
attributes, namely, numberSet (the NumberSet type) and stringSet (the StringSet
type). In order to add the attributes, you must call the correct method
of the AttributeValue class depending on the type of attribute, as shown here:

private static void putItems(String tableName) {
 Map<String, AttributeValue> item1 = new HashMap<String,
AttributeValue>();
 item1.put("hashKey", new AttributeValue().withS("hash1"));
 item1.put("rangeKey", new AttributeValue().withN("1"));
 item1.put("stringSet", new AttributeValue()
 .withSS(Arrays.asList("string1", "string2")));
 item1.put("numberSet", new AttributeValue()
 .withNS(Arrays.asList("3","2","1")));
 PutItemRequest putItemRequest = new PutItemRequest()

Chapter 4

[111]

 .withTableName(tableName)
 .withItem(item1);
 client.putItem(putItemRequest);
}

The following method will return a ProvisionedThroughput instance with the
populated write and read throughput capacities for your table. The long number
(2L) here means the maximum read or write data size per second. This is usually
measured in KB/s. Here, you are restricting the read/write speed to 2 KB/s:

private static ProvisionedThroughput getProvisionedThroughput() {
 ProvisionedThroughput provisionedThroughput = new
 ProvisionedThroughput()
 .withReadCapacityUnits(2L)
 .withWriteCapacityUnits(2L);
 return provisionedThroughput;
}

DynamoDB local
DynamoDB local is a local, client-side database, which emulates the DynamoDB
database in your local system. This is pretty helpful when developing an application
that uses DynamoDB as the backend. Every time after writing a module, in order
to test whether the code works fine, you need to connect to Amazon and run it.
This will consume a lot of bandwidth and a few dollars. To avoid this, you can
make use of DynamoDB local and test the code locally. Once the testing is done,
you can make your application use the AWS DynamoDB service. To do this,
follow these three steps:

1.	 Download DynamoDB local from http://dynamodb-local.s3-website-
us-west-2.amazonaws.com/dynamodb_local_latest.

2.	 Start the DynamoDB local service (it must be JRE6 or higher).
3.	 Point the code to use the DynamoDB local port.

The URL provided in Step 1 might become obsolete after some
point of time. In that case, visit http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/Tools.html, where
the link for downloading DynamoDB tools will be made available.

Managed Services and the Databases

[112]

The downloaded file might be a zipped file (tar.gz, .zip, or .rar). We need
to extract it to a location. I have extracted it to C:\dynamodb, as shown in the
following screenshot:

Starting DynamoDB local is very easy. First, you need to change the working
directory using the cd command, and then you can start DynamoDB local on
port 8888 using the following command:

java -D java.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar
-port 8888

Even the java -D java.library.path = ./DynamoDBLocal_lib -jar
DynamoDBLocal.jar command is enough to start DynamoDB local, but the
command starts it on port 8000, which is occupied by my PC. That's why I
use port 8888, as shown here:

Chapter 4

[113]

Once DynamoDB local is started, it's easier to configure the client. We need to make
changes in the three lines of the initializeCredentials method (as discussed in
the DynamoDB operations using CLI section of this chapter). We need to insert a new
line pointing to the DynamoDB localhost and port using the client.setEndpoint()
method, as shown in the following code. Then, you need to remove other
client-related setters such as setRegion.

private static void initializeCredentials() throws Exception {
 AWSCredentials credentials = null;
 try {
 credentials = new	 ProfileCredentialsProvider()
 .getCredentials();
 } catch (Exception e) {
 thrownew AmazonClientException(
 "Invalid location or format of credentials file.",e);
 }
 client = new AmazonDynamoDBClient(credentials);
 client.setEndpoint("http://localhost:8888");
 //Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 //client.setRegion(usWest2);
}

After this, if you run the AwsSdkDemo class, it will give you the following output in
the console (where DynamoDB local is started):

DynamoDB local stores all this data in the local SQLite database.

Managed Services and the Databases

[114]

Performing DynamoDB operations using CLI
Even though the former two interfaces provide an easy usage of DynamoDB,
the command-line interface provides good flexibility and, for the advanced
programmers, it makes life simple by reducing the number of clicks so you
can write commands and program to do certain redundant jobs instead.

To get the AWS CLI, go to the link mentioned in the following screenshot:

Visit https://s3.amazonaws.com/aws-cli/AWSCLI64.msi to download the AWS
CLI setup. Once the installation is complete, go to following path in the command
prompt (the path might differ based on the platform). Run the aws configure
command to configure the CLI with your AWS credentials. Pressing the Enter key
will prompt you to provide four options, as shown in the following screenshot:

Now you will see one of the simplest DynamoDB commands, which is table creation.
We are going to create the same table (but without secondary indexes) that you created
using the Management Console with the help of the following command:

aws dynamodb create-table --table-name dynamodb_table

--attribute-definitions AttributeName=hashKey, AttributeType=S
AttributeName=rangeKey, AttributeType=N

Chapter 4

[115]

--key-schema AttributeName=hashKey, KeyType=HASH AttributeName=rangeKey,
KeyType=RANGE

--provisioned-throughput ReadCapacityUnits=2,WriteCapacityUnits=2

We can retrieve all the table names in the configured region using the aws dynamodb
list-tables command. To describe a table, use the aws dynamodb describe-
table --table-name dynamodb_table command.

The following code shows how an item can be inserted in the DynamoDB table.
This command purely depends on the OS in which AWS CLI is installed. For
Windows 8, the command is as follows:

aws dynamodb put-item --table-name dynamodb_table --item {\"hashKe
y\":{\"S\":\"hash1\"},\"rangeKey\":{\"N\":\"1\"}, \"numberSet\":{\"
NS\":[\"1\",\"2\"]}}

--return-consumed-capacity TOTAL

For other platforms, if the command is throwing an error, you just need to replace \"
with ", as shown here:

aws dynamodb put-item --table-name dynamodb_table --item {"hashKey":{"S":
"hash1"},"rangeKey":{"N":"1"}, "numberSet":{"NS":["1","2"]}}

--return-consumed-capacity TOTAL

Otherwise, type aws dynamodb put-item help to retrieve the format in which
the request has to be made. The command used to scan a table with the name is
Tbl_Book is aws dynamodb scan --table-name Tbl_Book. There are several
other commands available in the AWS CLI. We can get help from these commands
using the aws dynamodb help command. This command will list the following
options (some options which we have already discussed are not listed here; they
are create-table, describe-table, list-tables, put-item, and scan):

•	 batch-get-item

•	 batch-write-item

•	 delete-item

•	 delete-table

•	 describe-table

•	 get-item

•	 help

•	 query

•	 update-item

•	 update-table

Managed Services and the Databases

[116]

The RDS command-line tool
We don't need to install a separate tool in order to perform the RDS operations.
We can use the same tool that you have used in the previous section while
discussing the DynamoDB command-line tool. The only thing that changes here
is the command. All of your DynamoDB commands began with aws dynamodb,
but here they should begin with aws rds, as shown in the following screenshot:

As shown in preceding screenshot, the aws rds help command will display
all the possible RDS operations. At present, the SDK's command line supports
54 RDS operations. It won't be possible to list all of them, so let's skip this part.
We can get the syntax and more information on each command by typing
help along with the command. For example, if you want more details
about the list-tags-for-resource command, then you should type
aws rds list-tags-for-resource help in the command line.

Chapter 4

[117]

Summary
In this chapter, you learned the features and uses of managed databases. You started
the chapter by discussing the aspects of the NoSQL database DynamoDB. Then you
performed table and item operations on DynamoDB. After that, you learned about
the best practices and relational database services called Amazon RDS. You also
configured and created a MySQL instance, then established a connection to your
instance through the MySQL workbench and executed a JDBC code that makes
use of this Amazon RDS instance. Finally, you learned about the various tools
and libraries for these database services.

In the next chapter, you will learn about Amazon's deployment and
management services.

Deployment and
Management

AWS provides application management and deployment services that help
you build, deploy, and scale your web applications instantly. You can use these
application management and deployment services to influence other AWS services
without having to manage each of them discretely and manually. In this chapter,
you will learn about the following topics:

•	 AWS CloudFormation
•	 Amazon CloudWatch
•	 Amazon Identity and Access Management
•	 Application deployment using AWS Elastic Beanstalk

AWS CloudFormation
Amazon CloudFormation is a method used to initiate environments easily. This
means that when you begin a CloudFormation environment, you will be able to
launch precise AMIs with meticulous key pairs on predefined instance sizes and
behind your AWS load balancers. If any segment of your environment fails to
launch, the environment rolls itself in reverse, terminating all the segments along
the way. You're going to use a tool that scrutinizes your running environment and
creates a CloudFormation template for you.

Deployment and Management

[120]

The tool that you are about to use will give you a template, which will be stored
in Amazon S3. Create a bucket to save the template. You have to use CloudFormer,
which is a prototype tool that is designed to help you build these templates, and yes,
you'll be able to twist the template to eliminate any unrelated instances and you'll
also be able to refrain the template as an apposite. The CloudFormer tool is intended
to create a starting point for your template. Once created, you can customize it in any
manner. CloudFormation and CloudFormer are also accessible via the AWS console.
Follow these steps to start with Amazon CloudFormation:

1.	 Go to the CloudFormation service from the listed AWS services and click
on the Create New Stack button.

2.	 Select the CloudFormer sample template from the listed templates and name
it AWSCloudFormer before clicking on the Continue button, as shown here:

3.	 Accept the terms and continue through the Review page.

Chapter 5

[121]

4.	 The console will display CREATE_IN_PROGRESS for a while.
When it's being completed, go to the Outputs tab and mark the
URL address of the CloudFormer tool, as shown here:

5.	 Now, try to connect to the tool that is running and start the wizard. Click
on Create Template and add an explanation that classifies which template
this is.

6.	 You'll be asked to select the resources on a series of screens. Select the load
balancer that is associated with your environment, if any, as shown in the
following screenshot:

Deployment and Management

[122]

7.	 Choose your autoscaling group (if any), as shown in the following screenshot:

8.	 Next, select the launch configuration.
9.	 Select the Security Group option that suits you and your environment.
10.	 Click on Continue for the remaining steps. The tool will generate a template

and then suggest an S3 bucket in which you can store the template.
11.	 Use the bucket that you fashioned earlier and click on the Save Template

button, as shown here:

Chapter 5

[123]

12.	 Finally, the following page will be displayed and you can launch the stack
now by clicking on the Launch Stack button, as shown here:

Alarms with Amazon CloudWatch
Amazon CloudWatch is the best monitoring service from Amazon that is used to
monitor all of your cloud resources and applications on AWS. Amazon CloudWatch
provides metrics to monitor your resources by collecting and tracking data. You can
utilize the Amazon CloudWatch metrics to gain insights into resource utilization,
application performance, and instance operational health. So, let's go through it
with some exercises as practice makes a man perfect!

In this section, you are going to monitor a custom CloudWatch metric. To do this,
perform the following summarized steps one by one:

1.	 Create a custom Identity and Access Management (IAM) role for an
Amazon Elastic Compute Cloud (EC2) instance so that the instance
has the permission to write statistics to CloudWatch.

2.	 Launch the new EC2 server instance.
3.	 Use Secure Shell (SSH) to log in to the server and generate a custom

CloudWatch metric.
4.	 Use CloudWatch to monitor this custom metric.
5.	 Create a CloudWatch alarm that will be triggered whenever the custom metric,

which you have created, drops below the level that you've mentioned.

Deployment and Management

[124]

Now, let's start with the first step, which is creating a custom IAM role for an
EC2 instance:

1.	 On the AWS Management Console, navigate to Services | All services |
IAM, as shown here:

2.	 In the navigation pane, click on Roles, as shown in the following screenshot:

3.	 Click on Create New Role and provide the parameters as needed (in this
instance, the role name is uchit, the AWS services role is Amazon EC2,
and the policy template is CloudWatch Full Access Template), as shown
in the following screenshot:

Chapter 5

[125]

4.	 Review the policy, click on Continue, and then click on Create Role.
5.	 Select the newly created role and on the Permissions page, click on

Attach Role Policy, as shown in the following screenshot:

6.	 Under the Select Policy Template menu, select Amazon EC2 Read Only
Access and apply it, as shown here:

7.	 Repeat the same procedure from step 5 for the Amazon SQS full access from
Policy Template.

Deployment and Management

[126]

Until now, you have set up from the IAM side; now, you have to create an EC2
instance with the declared IAM policy. Here, you will monitor the instance's
performance in subsequent processes. To create an EC2 instance, follow these steps:

1.	 Click on Amazon Management Console and then click on EC2, as shown
in the following screenshot:

2.	 Specify the IAM role and launch the instance, as shown in the following
screenshot. Please make sure that you are using the t1.micro instance
type, which might come with a free tier in your account:

Chapter 5

[127]

3.	 Once you are done with launching an instance, log in to the instance using
SSH and use AWS CLI to generate a custom metric.

Make a note of your public IP address in a text file to use it later;
it will be called monitoring-client-ip in further steps.

4.	 Copy the AZ value minus the final letter to a text file. This will be your
region and will be referred to as current-aws-region.

5.	 Set the environment variable for the region, as follows:
export AWS_DEFAULT_REGION=<current-aws-region>

6.	 Use the following command to create the CloudWatch metric:

awscloudwatch put-metric-data --namespace Uchit --metric-name
Test --value 8 -debug

The preceding command will create the sample metric; using this command, you can
also create any custom metrics, such as the performance metric or the usage metric.
Now, you can see this metric on your CloudWatch dashboard. To monitor the
custom metric in CloudWatch, follow these steps:

1.	 On the AWS CloudWatch Management Console, go to the navigation pane
and under the Metrics menu, select the Namespace option and then click
on Custom Metrics.

2.	 After you select Uchit, a normal graph will be displayed at the bottom of
the page.

3.	 For the CLI console, use the following command to retrieve the statistics in
the CLI console. This command triggers the alarm whenever the metric falls
below the designated level:

Awscloudwatch get-metric-statistics --metric-name "Uchit"
--namespace="Test" --start-time=$ (date -d yesterday -I) --end-
time=$ (date -d tomorrow -I) --period=400 --statistics="Maximum"

To monitor a custom CloudWatch metric, follow these steps:

1.	 Under the Alarm Summary section of the CloudWatch Management
Console, click on Create Alarm.

2.	 Select the custom metric and configure Alarm threshold; for example,
provide the Name, Description, and Attention Level details.

3.	 Under the Actions menu, provide the state of the Alarm and Notification
alerts settings.

4.	 Finally, click on Create Alarm.

Deployment and Management

[128]

To record a data point with CloudWatch, which can trigger the alarm from the SSH
console, use the following command:

awscloudwatch put-metric-data --namespace Uchit --metric-name Test
--value 4 -debug

To check the status of the alarm, you can verify it from the AWS CloudWatch
Monitoring Console. That's it!

Identity and Access Management
AWS has a shared security section that consists of AWS IAM. AWS IAM permits
the formation of distinct users or groups of users with granulated authorizations
and even precise services. Authorization levels can be set for any AWS service,
including Amazon EC2, letting exclusive security credentials that avert basic users
from retrieving statistics that are not related to their job meanings. You can also use
IAM to accomplish security credentials such as access keys, passwords, and MFA
devices centrally. Active instantaneously, IAM is the Generally Available (GA)
service among other AWS services now!

IAM includes the following features:

•	 Complete control over users, groups, and security credentials
•	 Control over the user's role-based access and security tokens
•	 Control over the shared AWS resources
•	 Authorizations based on organizational groups and users
•	 Centralized networking controls

Accessing IAM
You can work with AWS IAM using the following methods:

•	 The AWS Management Console
•	 The AWS command-line interface (CLI)

Using any of the preceding access methods, you can accomplish the IAM capitals,
for example:

•	 Create users/groups and assign permissions to them
•	 Create security credentials (roles and policies) for your users
•	 Assign passwords to your users and restrict them from particular services

Chapter 5

[129]

Here, to get familiar with AWS IAM and its usage, we will follow the first method as
an overview, and later in this book, we will bring IAM using CLI with other services.
Let's check out the first IAM console overview, as shown in the following screenshot:

When users sign in to their AWS account, they sign in via an IAM-enabled user
sign-in page. For their accessibility, this sign-in page routines a cookie to evoke
the user's position so that the subsequent time when a user serves to the AWS
Management Console, it automatically calls the IAM-enabled user sign-in page.
The navigation tab on the left-hand side (as shown in the following screenshot)
allows you to create and manage IAM users, groups of IAM users, their
permissions, and their security credentials separately, along with other services:

Deployment and Management

[130]

You can select the policy template, which is predefined in the IAM service, or even
build your own custom policies using AWS Policy Generator, as shown in the
following screenshot. The Permissions wizard includes a specific template for
every service that currently supports IAM, making it easy for you to get started
and define policies.

The features that we previously described represent our first overview-based steps
toward our long-term goals of learning IAM and its best use cases in the further
chapters. However, we have a long journey ahead of us, and we are looking forward
to additional integrations, data access methods, and product-based scenarios
with AWS IAM.

Authorization and authentication
One of the characteristics that I was concerned about to derive work at AWS was my
intellect that the cloud can be a pleasant and logical residence where we can figure
out security solutions; now, two of my beloved notions, positioning security in the
cloud and quickening the espousal of multifactor authentication.

Chapter 5

[131]

There are two imperative ideologies that are essential to confirm that precise people
are undertaking the right things in the information system. They are as follows:

•	 Authentication: This is how you demonstrate your uniqueness avowal.
AWS won't accept you as genuine until you are able to exhibit an
acquaintance of a clandestine that AWS can validate. Typically, it's your
username and password; it could also be the private key (secret key and
access key) associated with a digital certificate (here, we call it X.509 in
AWS). Authentication classifications send definite secrets over the wire in
no time; in its place, the enigmas are used to compute a difficult-to-reverse
message. Since apparently you are the only person who knows your secret,
your claim is valid in any system.

•	 Authorization: This is what you're permitted to look at once the cloud
grants you access to services. The following screenshot shows the security
credentials page:

A multifactor authentication device in AWS alleviates this base problem by
demanding an additional problem of proof. Authentication factors come in the
following varieties:

•	 Roughly you know: This consists of a password, passphrase, key, pin,
and response to a challenge

•	 Somewhat you have: This consists of a token, smartcard, mobile phone,
passport, and wristband

•	 Rather you are or do: This consists of a middle- and theft-resistant
biometric individual

Deployment and Management

[132]

In AWS, for authentication, you can use the two-factor authentication devices, and
for the connection and retrieval of data, you can use secret keys, access keys, and the
X.509 certificates. These things can be found in the Security Credentials menu under
the AWS Management Console option, as described in the preceding screenshot.
They also provide the Multi-Factor Authentication (MFA) device, which can be used
for two-factor authentication. The following screenshot shows two types of MFA
devices, A virtual MFA device and A hardware MFA device:

You can purchase your MFA device, if you want, at http://onlinenoram.gemalto.
com/, as shown here:

Chapter 5

[133]

There are two types of MFA devices available on this site that differ in their
characteristics and pricing. As per your requirement, you can buy an MFA device
and secure your AWS environment using the two-factor authentications.

Application deployment using AWS
Elastic Beanstalk
To start with AWS Elastic Beanstalk, you have to first learn some basics of AWS
SDK and its toolkit. The AWS toolkit for Eclipse will install and configure the latest
version of the AWS SDK for the platform you have selected. Using Eclipse, you can
easily manage, customize, build, and deploy any of the samples included in the SDK
packages. To install the AWS toolkit, follow these steps:

1.	 Navigate to the website aws-amazon.com/sdk-for-java.
2.	 Click on AWS Toolkit for Eclipse, as shown in the following screenshot:

3.	 There is an alternative way to configure this. Download Eclipse
Juno/Luna from https://www.eclipse.org/downloads/.

4.	 Start Eclipse.
5.	 Click on Help and then click on Install New Software.
6.	 In the Work with field, type http://aws.amazon.com/eclipse

and then press the Enter key.
7.	 In the list that appears, expand AWS Toolkit for Eclipse.
8.	 Add a check mark next to AWS Toolkit for Eclipse to download it.
9.	 Click on Next and the Eclipse wizard will, by default, take you through

the other installation procedures.

Deployment and Management

[134]

To access AWS through the toolkit for Eclipse, you have to configure the Eclipse
toolkit with your access key ID and secret access key, which should be available to
you in your AWS account. In addition to allowing the toolkit for Eclipse to create your
account, your access keys are also used to sign the requirements that are based on
web services to AWS. By allowing the requests to web services, it ensures that only
approved programs can make such requests. Moreover, by associating the access keys
to every web service request, AWS will be able to track the service usage for billing
and monitoring purposes.

The access keys will have a combination of an access key ID and a secret access key,
which will be used to sign in the programmatic logical request that you will compose
from the application source code to AWS to access different resources. If you don't
have access keys, you can create them from the AWS Management Console. For this,
go to Security Credentials and select Access Key ID from the available options, as
shown in the following screenshot:

Always keep your security key confidential to guard your account and never e-mail
it. Do not share it with a third-person from your organization, even if there is an
investigation from AWS or from any other channel.

To add your access keys to the Eclipse toolkit, follow these steps:

1.	 Open Eclipse's Preferences dialog box and click on AWS Toolkit located
in the sidebar.

2.	 Type your access key ID in the Access Key ID field.
3.	 Type your secret access key in the Secret Access Key field.
4.	 Click on Apply or OK to store your access key information.

Chapter 5

[135]

The following screenshot shows an example of a configured AWS Toolkit
Preferences screen with a default account:

The Preferences dialog box enables you to add the access information for more than
one AWS account by selecting a profile. Multiple accounts can be functional. In this,
they enable the developers and administrators to split resources that will be used for
the development stage from resources that will be used in the production stage.

To add another set of access keys, follow these steps:

1.	 On the AWS Toolkit Preferences screen, go to the Preferences dialog
box and click on the Add Account button.

2.	 Add your new account's details to the Account Details segment.
3.	 Choose an evocative name for the Account Name and enter your access

key details in the Access Key ID and Secret Access Key fields.
4.	 Click on Apply or OK to save your access key details.
5.	 You can repeat this procedure for as many sets of AWS account

information that you need.

The toolkit for Eclipse can also obtain your Amazon EC2 key pairs from the AWS
account. However, you will need to associate your private keys with them to use
them in the toolkit for Eclipse manually. To view your Amazon EC2 key pairs in
the toolkit for Eclipse, follow these steps:

Deployment and Management

[136]

1.	 Open Eclipse's Preferences dialog box; click on the triangle next to AWS
Toolkit, given in the sidebar to show the additional categories of the toolkit
for Eclipse settings, and configure it, as shown in the following screenshot:

2.	 Go to Key Pairs and Eclipse will show you a list of the available key pairs in
this window. If a key pair has a red-colored X mark next to it, you will need
to link a private key to the key pair to use it with your current use case, as
shown here:

3.	 Right-click on the key pair and from the context menu, choose the Select
Private Key File option, shown as follows:

4.	 Navigate to the private key file and select it to associate it to your key pair.

Chapter 5

[137]

To deploy the web application, follow these steps:

1.	 In the Eclipse toolbar, click on the AWS icon and then click on New AWS
Java Web Project.

2.	 In the New AWS Java Web Project dialog box, select Travel Log under
the Start from area of the dialog, which is a sample Java web application.
Enter a name, myTravelLog, in the Project name field, as shown in the next
screenshot.

3.	 Click on the Finish button. The toolkit will create the project and the project
will be shown in Project Explorer.

4.	 If the Project Explorer window is not visible in Eclipse, from the Window
menu, click on Show View and select Project Explorer.

Deployment and Management

[138]

5.	 The AWS Java Web Project dialog box will allow you to choose the region in
which your web application will be deployed and run. Here, we will select
US East (Virginia) as it is the cheapest in our case:

6.	 In the Project Explorer window, right-click on the myTravelLog application
and select the Run on Server option from the Run As menu.

7.	 You can use the sample code, which is provided to run and test
your deployment.

8.	 In the Run on Server dialog box, click on Manually define a new server
and then select AWS Elastic Beanstalk for Tomcat 7 from the list of the
given server options.

9.	 Enter a name, such as TravelLogServer, in the Server's host name field
or give a suitable name of your choice.

10.	 Finally, select Always use this server when running this project and then
click on Next, as shown in the following screenshot:

Chapter 5

[139]

11.	 In the Run On Server box, provide an application name, such as
myTravelLogApp, and an environment name, such as myTravelLogEnv, as
the information for your reference and then click on Next, as shown in the
following screenshot:

12.	 The Advanced configuration dialog box in the Run On Server menu enables
you to specify additional parameters for your web application deployment
reference, such as the IAM role, CNAME, notification e-mail address, and
so on.

13.	 Before deploying your application to the AWS Beanstalk Container, the
toolkit will show you a dialog box in which you can set a Version Label
to version your deployment. The AWS toolkit will generate a unique
version label based on the current time.

Deployment and Management

[140]

14.	 Click on OK, as shown here:

15.	 While your application is being deployed, the AWS toolkit will display a
progress status bar, as shown in the following screenshot:

16.	 When the deployment completes, you will be able to see the following page.
This is the user interface for the travel log application, which will be running
on your Amazon EC2 instance:

The preceding example shows the deployment of Elastic Beanstalk using the AWS
SDK toolkit.

Chapter 5

[141]

Summary
In this chapter, you learned some of the deployment and monitoring services. In
the first section, you learned AWS CloudFormation and its usages with different
configurations. Later, you went through the importance of the AWS CloudWatch
alarms and learned how you can create your own monitoring mechanisms for your
resources using AWS CloudWatch. After this, you explored an important concept
of AWS called IAM. You saw the basics of authorization and authentication. Finally,
you learned about application deployment using the AWS Elastic Beanstalk service
via SDK and code libraries.

In the next chapter, you will learn about the AWS SNS service and will see how this
service is important for your web architecture. You will also learn how to leverage
the benefits of AWS SNS by configuring it with your application.

Working with the AWS Simple
Notification Service – SNS

AWS provides mobile services that help you monitor your applications and files in
real time. As of now, AWS provides the following three mobile services:

•	 Amazon Cognito: This service is used to manage the AWS user identities
(when they access your AWS resources). This service allows you to specify
granular access policies to the AWS users accessing your resources.

•	 Mobile analytics: This service is used to monitor the data usage of
your applications.

•	 SNS: This service allows you to send push notifications to the mobile
(and many more) endpoints.

In this chapter, you will learn about SNS and the following topics will be covered:

•	 Identifying what AWS SNS is
•	 Exploring the baseline concept of SNS
•	 Exploring the SNS service models
•	 Accessing SNS using the Management Console
•	 Sample code and libraries of the AWS SNS service

Working with the AWS Simple Notification Service – SNS

[144]

Identifying Amazon SNS
Simple Notification Service (SNS) is a flexible, fast, and fully managed push
messaging service for mobile devices. With SNS, you can publish a message once
and deliver it one or more times. So you can choose to direct unique messages to
individual mobile devices with a single publish request. All the published SNS
messages are stored redundantly across multiple availability zones to prevent the
messages from being lost.

In the former chapters, you created an alarm that sends an e-mail intimation
to kprabha1989@gmail.com if the provisioned throughput exceeds 80 percent;
sending e-mail, SMS, or HTTP messages or notifications to the user when a
specific condition occurs is the basic use case of SNS.

The baseline concepts of Amazon SNS
Before learning about Amazon SNS, you need to understand a few Java Message
Service (JMS) terminologies. To understand this better, let's take a look at an
illustration where you have registered your mobile number and e-mail ID with your
bank. So, whenever you make any card transactions, you will get SMS and e-mail
intimations. The JMS terminologies are as follows:

•	 Topic: This is a distribution mechanism (identified by a unique topic name)
to publish messages. Let's give the topic a name such as PrabhakarDebit.

•	 Endpoint: This is the receiver (or subscriber) of the topic message. This
usually will be a mobile number, e-mail ID, and so on. For example, in this
case, the PrabhakarDebit topic will have two endpoints. The first endpoint
will be a mobile number and the second endpoint will be an e-mail ID.

A topic can have any number of endpoints; each endpoint
may or may not use the same protocol. For example,
more than one mobile number can be an endpoint for the
PrabhakarDebit topic.

•	 Protocol: This is the manner in which the topic message is delivered to
the subscriber. The possible protocol values are HTTP, HTTPS, e-mail,
e-mail-JSON, SMS, Amazon SQS, and an application.

•	 Subscription: This is the process of adding subscribers to the topic. For
each and every endpoint, a separate subscription has to be made and the
subscription must be confirmed by the endpoint. Only after the confirmation,
the topic messages will be delivered to the endpoint.

Chapter 6

[145]

The following diagram shows you the SNS message delivery for a topic. Whenever
a message is published to an SNS topic, the notifications will be sent to all the
subscribers, irrespective of the endpoint type. The endpoint type can be SQS,
HTTP or HTTPS, SMS, or e-mail.

The service models of Amazon SNS
Amazon SNS provides many service models, out of which five of the services are of
utmost importance. In some of these offerings, SNS will be aiding them (the example
with Amazon CloudWatch, SQS, and so on), and in other cases, you will learn the
service varieties provided by SNS. You will see these in a sequence.

Usage in CloudWatch
CloudWatch is one of the services offered by AWS which enables you to monitor
your resources in real time. However, everybody has a busy life, and they have
better things to do than keeping an eye on CloudWatch's real-time graphs all the
time. Amazon SNS and CloudWatch are already integrated by AWS. Instead of
sitting in front of the PC all the time to keep an eye on your resources, you can set
a condition and whenever a certain condition is set by you in CloudWatch, you
can send a notification to any endpoint using SNS. This saves a lot of time.

Working with the AWS Simple Notification Service – SNS

[146]

Mobile push notifications service
Amazon SNS has the ability to push notifications directly to any mobile platform using
the device's ID as the endpoint identifier. As of now, SNS supports push notifications
to six devices, as shown in the following diagram. So, along with other endpoints, a
topic can directly push notifications to the devices simultaneously, as shown in the
following diagram:

Conjunction with the SQS queues
If a topic publishes millions of messages simultaneously, which are subscribed by
millions, then some of the messages might not reach the subscriber. This is because
of the absence of a pooling mechanism in SNS. This is where SQS comes into the
picture. AWS allows you to divert all your SNS messages to an SQS queue, thereby
making the delivery of those messages 100 percent guaranteed.

The SMS notifications service
One of the simplest and reliable notifications is SMS because it consumes nearly
zero data charges and the notification is provided for free by almost all the service
providers. If you make the SNS endpoint (for the corresponding mobile numbers) for
an SMS subscription to an SNS topic, then the message will be delivered as an SMS.

Chapter 6

[147]

The HTTP/HTTPS messaging service
In the case of push notifications to mobile devices or an SMS notification or e-mail
notification, there might be some delay involved for the subscriber to respond to
the notification. So, sometimes you need to send these notifications to the REST
endpoints, which can automatically take the necessary actions instantaneously
(as soon as the message of the topic is received).

Accessing SNS using the Management
Console
In the Management Console, SNS will be available in the Mobile Services section.
To begin with SNS, click on the SNS option, as shown in the following screenshot:

Clicking on this icon will take you to the SNS dashboard. The dashboard consists
of the following four sections:

•	 The Navigation section
•	 The Getting Started section
•	 The My Resources section
•	 The Additional Actions section

Working with the AWS Simple Notification Service – SNS

[148]

These sections are shown in the following screenshot:

As the name suggests, the Navigation section consists of a link to navigate back to
the SNS dashboard, manage all the apps used by you, and manage the subscriptions
and topics. Accessing this page for the first time will show the Apps(0) and Topics(0)
links, as you haven't created any SNS topic or application yet. This is the most
important and frequently-used section. The Navigation section will be visible on
almost all the pages.

The Getting Started section has an overview of SNS and its strengths. This section
has two buttons. The Add a New App button is used to register an application to
send the push notifications to mobile devices. The Create New Topic button is used
to create a new SNS topic. Creating an SNS topic will be the primary operation.

The My Resources section shows you a detailed account of the SNS resources
acquired by you. Even though you are accessing SNS for the first time, why is it that
it is showing three subscriptions as confirmed? The answer lies in the AWS Glacier
section of Chapter 2, Working with the AWS Storage Services. In this section, you created
a vault and added three archives to it using the Java SDK. For every archive you
created, an SNS (and SQS) client is present to notify the status of the Glacier vault. All
these numbers are real-time values accounting to SNS resources in this region only.

The Additional Actions section has links for topic-related operations, such as
creating and confirming subscriptions to a topic and publishing messages to a topic.

Chapter 6

[149]

If you want to take a look at all the subscriptions, you can click on the Subscriptions
link available in the Navigation section. One click and it will show the page, as
shown in the following screenshot. You can see all the three subscriptions listed,
and a checkbox will be available on the left-hand side of the subscription. If you
wish to delete any of these subscriptions, you can check the corresponding checkbox
and click on the Delete Subscriptions button. We will discuss this page in a while,
after creating an SNS topic.

Creating an SNS topic
Clicking on the Create New Topic button will result in the following page. It asks
for two parameters. The first parameter is Topic Name, which is mandatory, and
the second parameter is Display Name, which is mandatory for the SMS protocol.
For all other protocols, the display name is optional. Once you have provided the
necessary details, you need to click on the Create Topic button, as shown in the
following screenshot:

Working with the AWS Simple Notification Service – SNS

[150]

You can see the created SMStopic option in the following SNS dashboard when you
expand the Topics (1) link in the navigation section. Clicking on SMStopic will show
you the Topic ARN and other details. The topic ARN is used to delete, subscribe,
unsubscribe, and edit the permission of the topic. So, for all the API or SDK calls,
you need to make a note of this ARN.

The topic ARN will usually be in the arn:aws:sns:<region-name>:<subscriber>:
<topic-name> format. In the preceding screenshot, the Region name is us-east-1,
Topic Owner is 016883241246, and the topic name is SMStopic. The subscriber value
is unique for every AWS user. So, even if you delete this topic (from us-east-1) and
create it again with the same topic name, Topic ARN will remain the same (or in
other words, it will be recreated in the same region).

Chapter 6

[151]

Adding a subscription to a topic
Even if you have the topic ready, unless someone subscribes to the topic, all the
messages published to the topic are a waste of time. It's like you have a key, but you
don't know what it unlocks. To add a subscriber to SMStopic, you need to click on
the Create Subscription button. Once you do this, the following page will be shown.
The topic will be preloaded as SMStopic, and you can choose one of the following
protocols. At the endpoint, you need to specify the necessary values. For example, if
you need to create an SMS (protocol) subscription for this topic, then you need to enter
the mobile number in the Endpoint textbox, as shown in the following screenshot:

After adding the necessary values, if you click on the Subscribe button, you will be
taken back to the Topic Details page. You will be able to see the SMS subscription
(which you have added in the previous step) in the PendingConfirmation status. An
SMS will be sent to the mobile number, asking for a subscription confirmation. Once
it is confirmed, the subscription ID will be updated with a new ARN, as shown in the
following screenshot:

Working with the AWS Simple Notification Service – SNS

[152]

If you need to add an e-mail subscription to SMStopic, you can do so by clicking on
the Create Subscription button and following the same steps that you performed
for the SMS subscription, but here you need to select the protocol as e-mail and the
endpoint as an e-mail ID. Once you do this, a confirmation e-mail will be sent to the
ID entered by you in the endpoint textbox, as shown in the following screenshot:

You need to click on the Confirm subscription link to confirm the subscription.
The confirmation page will show you the subscription ID, as follows:

Chapter 6

[153]

Once the subscription is confirmed, you can see the subscription ID (which is
an ARN and is mandatory to manage the subscription) arn:aws:sns:us-east-
1:016883241246:SMStopic:74f39925-f28c-4f53-827f-0259e6120e9b. However,
the subscription ID of the SMS subscription (until you confirm) will remain as
PendingConfirmation, as shown in the following screenshot:

Topic actions
Having created and subscribed to a topic, the next step is to learn about the frequently
performed topic actions. In the Topic Details section, if you click on the All Topic
Actions dropdown, it will show those actions. The possible actions are as follows:

•	 Publish to the topic
•	 Delete the topic
•	 Confirm the subscription
•	 Edit the topic display name
•	 View/edit the topic policy
•	 View/edit the topic delivery policy

Working with the AWS Simple Notification Service – SNS

[154]

Publishing to the topic
The next step is to publish a message to SMStopic. To do this, you need to select the
Publish to this Topic option available in the All Topic Actions dropdown (as shown
in the preceding screenshot). Once you select this option, the Publish page will
pop up, asking you for the following information. You can specify the Subject and
Message options and then click on the Publish Message button. This message will
be delivered to all the subscribers of SMStopic.

Chapter 6

[155]

If you check your mail box (which is subscribed to SMStopic), you will see the
message published by you, as shown in the following screenshot. Even if you look at
the mobile subscribed to SMStopic, you will see the same message, shown as follows:

Now, it's time to discuss an important feature of SNS, which is used to send different
messages to different endpoints (which differ by protocol). For example, for all the
mobile numbers, the same SMS message should be sent, whereas for all the e-mail IDs,
a different message should be sent. In the Publish page, there are two radio buttons,
which you will have to take a look at once again, as shown in the following screenshot:

While publishing your first message, you have used the first option. If you want to
specify a different message for different protocols, then you should select the second
radio button. Selecting the second option will change the page, as shown in the
following screenshot. You can specify different messages for different protocols
and then click on the Publish Message button:

Working with the AWS Simple Notification Service – SNS

[156]

Topic policy actions
When you select an action, the View/edit topic policy option will show you the
following page. You can set the policy in two ways: first, using the basic view,
and the second using the advanced view. You will learn about the basic view
now. It has two sections.

The first section, Publishers, will help you to specify who can publish the message
to the topic. Selecting the Only me option will not allow others to publish messages
to the topic. Selecting the Everyone option will allow anyone and everyone to
publish messages, and selecting Only these AWS users will allow only specific
AWS users (whose account IDs are specified and separated by a comma).

The second section, Subscribers, has four options in total. The first three options are the
same. So, you will directly go to Only users with endpoints that match. If you choose
this option, then you can specify the endpoints (which can subscribe to this topic) with
wildcard characters. Along with this, you can select the protocols that are allowed for
self subscription by the subscribers themselves, as shown in the following screenshot:

Chapter 6

[157]

If you select the advanced view, the following page will open, which will ask you to
specify the JSON to change the topic policy. If you want to allow a self-subscription
for the topic with the policy (allow the endpoints that end with @infosys.com for all
the possible protocols), then you need to set JSON.

Topic delivery policy actions
Selecting the View/edit topic delivery policy option will show you the following
page. These policies are used to specify how the topic messages are to be delivered,
and in case of any errors, the number of times a retry can be performed, and so on.
You can set the policy in two ways. First, we will use the basic view and then use
the advanced view. Now you will learn about the basic view. One highlight of this
delivery policy is to specify the Retry backoff function. This is used to specify the
period after which the failed delivery should be resent.

Working with the AWS Simple Notification Service – SNS

[158]

You can choose one of the options (Linear, Arithmetic, Geometric, or Exponential).
If you choose Linear, then for every failed delivery, the delivery will be same after
the same period of time. For example, after every 2 seconds, a failed delivery will
be retried. If you choose Exponential, then a retry will be made for an exponential
period of time. For example, the first retry will be made after 2 seconds, the second
retry will be made after 4 seconds, then 8 seconds, then 16 seconds, and so on. In
addition to this, you can override the subscription-based policy with this one by
checking the Ignore subscription override checkbox.

Chapter 6

[159]

Selecting the Advanced View tab will show you JSON, as shown in the following
screenshot. All the options are the same; the only difference is that it will be
represented in a different way:

The sample code and libraries of SNS
Amazon SNS doesn't have any specialized tools, so you are going to learn about
the Java AWS SDK (using the Eclipse plugin) and the CLI tool configured by you in
Chapter1, An Introduction to AWS. In this section, you will learn how to perform the
operations performed by you in the Management Console using the preceding tools.

Performing SNS operations using the Eclipse
AWS SDK
The Eclipse AWS SDK provides libraries to perform SNS operations. Even though
you have already created an SNS topic in the AWS Glacier section of Chapter 2,
Working with the AWS Storage Services, you will see it in detail here.

Working with the AWS Simple Notification Service – SNS

[160]

The code used to create an SNS topic using the Java SDK is as follows:

ProfileCredentialsProvider credentials = new
ProfileCredentialsProvider();
AWSCredentials credential = credentials.getCredentials();
AmazonSNSClient client = new AmazonSNSClient(credentials);
CreateTopicRequest topic = new CreateTopicRequest();
 topic.setName("SDKTopic");
 topic.setRequestCredentials(credential);
CreateTopicResult topicRequestResult = client.createTopic(topic);
String topicArn = topicRequestResult.getTopicArn();
System.out.println(topicArn);
/* Will print topicArn as "arn:aws:sns:us-east-
1:016883241246:SDKTopic" */

If you execute this code (by placing it inside a main method), it will create an SNS
topic named SDKtopic in us-east-1, North Virginia region (which is mentioned in
your credentials file while configuring the AWS plugin for Eclipse). This code will
also return a CreateTopicResult instance that you can use to retrieve the topic
ARN. So, topicRequestResult.getTopicArn() will return the topic ARN, which is
arn:aws:sns:us-east-1:016883241246:SDKTopic, as shown in the following screenshot:

Once you have the topic ARN, you can easily add subscribers to the topic by
executing the following code:

SubscribeRequest subscribeRequest = new SubscribeRequest();
 subscribeRequest.setTopicArn(topicArn);
 subscribeRequest.setRequestCredentials(credential);

Chapter 6

[161]

 subscribeRequest.setEndpoint("kprabha1989@gmail.com");
 subscribeRequest.setProtocol("email");
SubscribeResult subscribeResult =
client.subscribe(subscribeRequest);

The preceding code will subscribe an email endpoint to an e-mail ID, kprabha1989@
gmail.com. A confirmation mail will be sent to the e-mail address. After the owner
of the endpoint confirms the subscriptions, a subscription ID will be updated in your
topic subscription page.

Right now, you have a topic and some subscribers for the topic. So, the next action
item to be performed is to publish to the topic. The following code publishes
a message to SDKtopic:

PublishRequest publishRequest = new PublishRequest();
 publishRequest.setSubject("AWS SNS message through Eclipse
SDK");
 publishRequest.setMessage("This is a sample mail sent through
 Eclipse.\nRegards,\nPrabhakaran K");
 publishRequest.setTopicArn(topicArn);
 publishRequest.setRequestCredentials(credential);
PublishResult publishResult = client.publish(publishRequest);

Once you execute the preceding code, the message will be sent to all the confirmed
subscribers of SDKtopic. The following screenshot shows the message. At any point
of time, a subscriber (by themselves or by the topic owner) can be unsubscribed from
the topic using the link, as shown in the following screenshot:

The unsubscribe link will have a lot of information; arn:aws:sns:us-east-
1:016883241246:SDKTopic:ef495c1d-90f5-4102-9d45-e5fca1c8929d is the subscription
ID and the endpoint is kprabha1989@gmail.com.

Working with the AWS Simple Notification Service – SNS

[162]

If you need to unsubscribe from SDKtopic using the Java code, the following code
will serve the purpose:

UnsubscribeRequest unsubscribeRequest = new UnsubscribeRequest();
 unsubscribeRequest.setRequestCredentials(credential);
 unsubscribeRequest.setSubscriptionArn("arn:aws:sns:us-east-
 1:016883241246:SDKTopic:ef495c1d-90f5-4102-
9d45-e5fca1c8929d");
 client.unsubscribe(unsubscribeRequest);

The following code will provide all the subscription permissions to the endpoints
that end with @infosys.com on SDKtopic:

Condition endpointCondition = SNSConditionFactory
 .newEndpointCondition("*@infosys.com");
Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));
client.setTopicAttributes(
 newSetTopicAttributesRequest(topicArn, "Policy",
 policy.toJson()));

Last but not least, the following code is used to delete the topic from your account.
You can do this by passing the topic ARN and your credentials:

DeleteTopicRequestdeleteTopicRequest = new
DeleteTopicRequest(topicArn);
 deleteTopicRequest.setRequestCredentials(credential);
client.deleteTopic(deleteTopicRequest);

Performing SNS operation using the CLI tool
As you have already learned, the creation of a topic requires only a topic name as
the mandatory parameter. The command that is used to create a topic is shown
in the following screenshot along with its response. The command is aws sns
create-topic --name <topic-name>. This command's response will return the
topic ARN, shown as follows:

Chapter 6

[163]

You can subscribe to this topic using the ARN with the following command:

aws sns --topic-arn <topic-arn> --protocol <protocol-name> --
notification-endpoint <endpoint>

The command shown in the following screenshot adds two e-mail subscribers
(kprabha1989@gmal.com and kprabha1989@gmail.com) to CLItopic. Both of
these commands will give the response a pending confirmation because these
subscriptions need to be confirmed by the endpoint owner:

The following screenshot is taken after I have confirmed the subscription to one of
the e-mail IDs. You can see this in the following Subscription ID status too:

Working with the AWS Simple Notification Service – SNS

[164]

If you want to list all the subscriptions of all the topics created by you, you can use
the aws sns list-subscriptions command, as follows:

Chapter 6

[165]

If you want to list all the subscriptions for CLItopic, you should use the aws
sns list-subscriptions-by-topic --topic-arn arn:aws:sns:us-east-1:
016883241246:CLItopic command, as shown in the following screenshot:

The response to the command will have all the required information (which was
available in the Management Console's subscription page) such as owner id,
endpoint, protocol, topic-arn, and subscription-arn.

Similarly, you can publish a message to a topic using the aws sns publish
--topic-arn <topic-arn> --subject <message-subject> --message
<message-body> command. This command will send the message ID as the
response, as shown here:

Working with the AWS Simple Notification Service – SNS

[166]

You can see the message's subject (SNS CLI) at the top of the following screenshot
and the message body highlighted beneath it:

There are numerous ways to unsubscribe to a topic. The simplest way to do this
is by clicking on the unsubscribe link in the preceding screenshot (of the e-mail).
If you need to unsubscribe using the command prompt, then you need to get the
subscription ARN and pass it to the aws sns unsubscribe --subscription-arn
<subscription-arn> command, as shown in the following screenshot:

To delete a topic from your account, you should have the topic ARN with you. Once
you have it, you can execute the aws sns delete-topic --topic-arn <topic-
arn> command, as shown here:

Chapter 6

[167]

There are many more SNS operations that are possible with the AWS CLI tool.
You can list all the commands using the aws sns help command. If you
specifically want help or the syntax of one of these commands (for example,
the add-permission command), you can use the aws sns add-permission
help command, as shown in the following screenshot:

Working with the AWS Simple Notification Service – SNS

[168]

Summary
You started the chapter by learning about the SNS service. You learned the use case,
how it is being used by other AWS services, and how you have used SNS in the
former chapters. After this, you explored the terminologies and concepts behind
SNS. Then, you moved the focus to discuss the service models offered by SNS.
Finally, you learned how to perform SNS operations using the Eclipse Java SDK
and the CLI tool.

The real advantage of SNS can only be realized if it is queued properly so that none
of the subscribers miss any of the topics that the user has subscribed to. Even in the
AWS Glacier section of Chapter 2, Working with the AWS Storage Services, you used SNS
in conjunction with SQS—an Amazon queuing service.

In next chapter, you will learn more about SQS and see how it can be integrated
with SNS.

Working with AWS SQS
Amazon Simple Queue Service (SQS) is an extremely scalable messaging queue
service offered by AWS. Amazon SQS can be used to decouple tasks of different
workings within the existing system, which exchange data or a chain of data, to
perform sovereign tasks. In this chapter, you will learn the following topics:

•	 AWS SQS
•	 SQS's service object models
•	 The baseline concept of SQS

AWS SQS
Amazon SQS gives you a trouble-free method to set up queues of messages that
you can use to supervise workflows or to queue up the work to be performed. This
can be an alternating for many other Message Queuing Services (MQS), such as
Microsoft's MSMQ, IBM's MQSeries, and so on. SQS can be used for message-oriented,
architecture-based applications. Amazon SQS also allows us to save important data
which might be lost in case the entire application goes down or if any component
becomes unavailable.

Amazon SNS is a utility service that enables robust messaging for your application
as well as adds a flow to it. You can propel a solitary message to manifold subscribers
via multiple protocols; for example, you can concurrently post something to a website
via HTTP or HTTPS POST and also by sending an e-mail with an equivalent message.
Messages can be up to 8 KB long, plus the subject of the message can be up to 100
characters in length.

Working with AWS SQS

[170]

The baseline concept and object models
of SQS
There are multiple things to take into consideration before you start with Amazon
SQS. Consider the following points:

•	 You have to assign a unique name to every queue. The name of the queue
or a subset of the queue can have the same initial characters.

•	 A queue can be empty if you haven't sent any messages to it or deletion
happened in the queue from your side. Deletion can be done at any point
of time in the queue.

•	 A queue will retain messages until four days after their creation. Moreover,
you can increase this period to 14 days after the message has been sent.

•	 Amazon SQS can delete your queue without any prior notification if the
following actions are not performed on the queue for 30 consecutive days:

°° SendMessage

°° ReceiveMessage

°° DeleteMessage

°° AddPermission

°° RemovePermission

°° GetQueueAttributes

°° SetQueueAttributes

Properties of a distributed queue
There are some basic terms and rules—you can call them guidelines—which can
help you to design your application and use Amazon SQS effectively.

Chapter 7

[171]

These properties are described as follows:

•	 Message order: From the point of view of AWS, they will do their best to give
you messages in the same order that you sent them but there is no guarantee
of this. It's good to send your messages with sequencing information, so that
later on you can get your messages in an order from that sequence information
if something messed up your sequence at transition.

•	 At-least-once-delivery: From AWS's point of view, your messages will
be replicated on multiple servers to give you the advantage of High
Availability (HA) and redundancy. However, because of this, if something
goes wrong, AWS won't delete your message from any server and you
will receive that message more than once. So, you should develop your
application in such a way that it has some provision if the same message
comes more than once.

•	 Message sample: The retrieving behavior will depend on the following
polling methods:

°° Short polling: While retrieving messages from the queue, Amazon
SQS will sample a subset of the servers and give messages only from
those servers. This means that your specific raised request might not
return all the messages from the queue. So, a best practice might be
to continuously retrieve all the messages successfully.

°° Long polling: This allows SQS to wait before sending a response
until the message is available in the queue.

To enable long polling in AWS SQS from the Management Console, follow these steps:

1.	 Create a new queue for the AWS SQS console by clicking on Create New
Queue, as shown in the following screenshot:

Working with AWS SQS

[172]

2.	 In the newly opened dialog box, provide an appropriate name for the queue,
as shown here:

3.	 Provide any positive value, from 1 second to 20 seconds, in an integer
format only in the Receive Message Wait Time field, as shown in the
following screenshot:

4.	 As the final step, just click on Create Queue.

Chapter 7

[173]

The life cycle of an Amazon SQS message
To understand Amazon SQS in a very simple manner, you should know the message
life cycle of Amazon SQS. So, let's try to understand this using the following steps:

1.	 As shown in the following diagram, Component 1 sends a message X to
a queue, and the message is redundantly distributed across the AWS SQS
servers over the AZs:

Visibility
Timeout
Clock

X

X

X

X

Component 1

0

40

2.	 When Component 2 is ready to process the message, it will take the
message from the queue and the message X will be returned. While X is
being processed, it will be there in the queue and won't receive a request
for the time period of the visibility timeout, as shown here:

Visibility
Timeout
Clock

X

X

X

X

Component 2

0

40

5

3.	 Component 2 will delete the message X from the queue to shun the
message from being received and processed another time on the occasion
the visibility timeout expires, as shown in the following diagram:

Visibility
Timeout
Clock

Component 2

0

40
25

X

Working with AWS SQS

[174]

Until now, you learned the basics of AWS SNS and its models/life cycle. Now, you
will see how you can use AWS SNS with your application. You can also use the SDK
for the following operations.

Code and libraries of the AWS SQS
service
You saw how to create the SNS topic in the previous section. Now, you will learn
how to publish it and how to start SNS using CLI.

To publish a message, follow these steps:

1.	 The publisher sends the messages to the topics. So, in the topics list,
click on the Publish to Topic button to start.

2.	 You will get a Message box, as shown in the following screenshot.
Enter your message in it:

You will get a confirmation message stating that it has been done successfully.
After this, you can check your mail box.

Chapter 7

[175]

To start AWS SNS from AWS CLI, you have to install the CLI tools for it on
your instance. To do this, follow these steps:

1.	 Update your existing packages using the following command:
sudo apt-get update

2.	 After completing the update process, install Java using the following
command and verify it:
sudo apt-get install openjdk-6-jre-headless

java –version

If you get the following output, it means that Java was installed successfully:

java version "1.6.0_24"

OpenJDK Runtime Environment (IcedTea6 1.11.3) (6b24-1.11.3-
1ubuntu0.12.04.1)

OpenJDK Client VM (build 20.0-b12, mixed mode, sharing)

3.	 Download the AWS SNS tools using the following command:
wget http://sns-public-resources.s3.amazonaws.com/
SimpleNotificationServiceCli-2010-
03-31.zip

4.	 Unzip the ZIP file using this command:
sudo apt-get install unzip

sudo unzip SimpleNotificationServiceCli-2010-03-31.zip

5.	 Create one directory for SNS and copy your unzipped directory here using
the following command:
sudomkdir /usr/lib/AmazonSNS

sudo mv SimpleNotificationServiceCli-1.0.3.3/
/usr/lib/AmazonSNS/

6.	 Create a credentials file and provide your access key ID and a secret key
in it, as follows:
cd /usr/lib/AmazonSNS/SimpleNotificationServiceCli-1.0.3.3/

sudocp credential-file-path.templatecredentials.cnf

sudonanocredentials.cnf

7.	 Create a shell script and run it to check your SNS tools and configuration
as follows:
vi sns.sh

Working with AWS SQS

[176]

8.	 Add the following lines to your script file:
#!/bin/bash

export
AWS_SNS_HOME=/usr/lib/AmazonSNS/SimpleNotificationServiceCli-
1.0.3.3

export AWS_CREDENTIAL_FILE=$AWS_SNS_HOME/credentials.cnf

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-i386/

export
PATH=$PATH:/usr/lib/AmazonSNS/SimpleNotificationServiceCli-
1.0.3.3/bin

java -version

9.	 To run this file, make it executable with a suitable permission as follows:
sudochmod +x ./sns.sh

sudochmod +x /usr/lib/AmazonSNS/SimpleNotificationServiceCli-
1.0.3.3/bin/*

10.	 To run the file, use the following command:
sh sns.sh

11.	 To publish the message, use this:

sns-publish arn:aws:sns:ap-southeast-1:777890292532:CRM --
message "Hello from the great Uchit Vyas….LOL" --subject
"I'm UV" --region ap-southeast-1

Your message and topic will be created successfully. Now, in order to make the file
executable for events, follow these steps:

1.	 Various Linux distributions run at different run levels on boot time. In my
case, Ubuntu AMI is operating at run level 2. You can test yours with the
following command:
runlevel

Chapter 7

[177]

You will get the following output:

2.	 Create a file named sns-notify under the /etc/init.d/ directory with the
following content:
#!/bin/bash
export AWS_SNS_HOME=/usr/lib/AmazonSNS/
SimpleNotificationServiceCli-
1.0.3.3
export AWS_CREDENTIAL_FILE=$AWS_SNS_HOME/credentials.cnf
export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-i386/
export PATH=$PATH:/usr/lib/AmazonSNS/SimpleNotificationServiceCli-
1.0.3.3/bin
START=`date`
sns-publish arn:aws:sns:ap-southeast-1:777890292532:CRM --
message "A fresh server just launched on $START " --subject
"AWS Alert!" --region ap-southeast-1

3.	 Create a symbolic link to add the file to the rc.d directory in order to run a
script on every boot up after making it executable, as follows:
Sudo chmod +x sns-notify

4.	 For the symbolic link, use the following command:
cd /etc/rc2.d

sudo ln -s ../init.d/sns-notify S99sns-notify

5.	 Date your rc scripts with this command:

sudo update-rc.dsns-notify enable 2

Now, try to stop and start your instance or reboot your system. At the boot time
of the instance, you will get an e-mail notification in your mailbox if everything
works fine.

Working with AWS SQS

[178]

For SDK users, follow these syntaxes to start with AWS SNS:

1.	 After getting the SDK from AWS, add references of the following
namespaces to your class:
Amazon.SQS;

Amazon.SQS.Model;

2.	 Declare an object to provide your access key ID and secret key as follows:
AmazonSQSClientobjClient = new AmazonSQSClient
 ("YourAmazonCloudAwsAccessKeyId", "
YourAmazonCloudAwsSecretAccessKey");

3.	 Create your SQS queue using the following code:
CreateQueueResponsequeueResponse = new CreateQueueResponse();

queueResponse = objClient.CreateQueue(new
CreateQueueRequest()
 { QueueName = "DemoQueue" });

4.	 To get lists of the existing queues, use the following code:
ListQueuesResponseobjqueuesResponseList = new
ListQueuesResponse();
objqueuesResponseList = objClient.ListQueues(new
ListQueuesRequest());
ListQueuesResult Result =
objqueuesResponseList.ListQueuesResult;

5.	 Send a message to the queue with the following code:
stringmyQueue =
uv.QueuesList.SelectedItem.Value.ToString();

objClient.SendMessage(new SendMessageRequest()
 { MessageBody = uv.txtMessage.Text, QueueUrl = myQueue
});

6.	 To receive a message from the queue, use this:
stringmymessage = string.Empty;
stringmyQueue = uv.QueuesList.SelectedItem.Value.ToString();

ReceiveMessageResponse queueReceiveMessageResponse = new
ReceiveMessageResponse();

Chapter 7

[179]

queueReceiveMessageResponse = objClient.ReceiveMessage(new
ReceiveMessageRequest() {
QueueUrl = myQueue, MaxNumberOfMessages = 10 });

MyReceiveMessageResultobjMyReceiveMessageResult = new
MyReceiveMessageResult();
objMyReceiveMessageResult = queueReceiveMessageResponse.
MyReceiveMessageResult;

List<myMessage> mymessagesList = new List<myMessage>();
mymessagesList = objMyReceiveMessageResult.Message;

foreach (Message objMessage in messagesList)
{
 mymessage += objMessage.Body;
 receiptHandle = objMessage.ReceiptHandle;
}

Session["MessageReceiptHandle"] = receiptHandle;
txtReceivedMessage.Text = mymessage;

7.	 To delete the SQS message, use this:
stringmyQueue =
uv.QueuesList.SelectedItem.Value.ToString();

DeleteMessageResponse objDeleteMessageResponse = new
DeleteMessageResponse();
objDeleteMessageResponse = objClient.DeleteMessage(new
DeleteMessageRequest()
{ QueueUrl = myQueue, ReceiptHandle =
Session["MessageReceiptHandle"].ToString() });

8.	 Finally, to delete the SQS queue, use the following code:

stringmyQueue =
uv.QueuesList.SelectedItem.Value.ToString();

DeleteQueueResponsemymyqueueDeleteResponse = new
DeleteQueueResponse();
mymyqueueDeleteResponse = objClient.DeleteQueue(new
DeleteQueueRequest()
 { QueueUrl = myQueue });

Working with AWS SQS

[180]

In this way, you can perform various operations on AWS SQS and can integrate
SQS into your application. To understand how AWS SQS can be integrated with
other applications in real time, we will see batch processing on AWS and learn how
AWS SNS is helpful in it. Here, we will go through the basic batch processing steps
by horizontally using Amazon EC2 for computing and Amazon SQS for message
queuing. To create a batch processing cluster, you will use the AWS Management
Console, as follows:

1.	 Launch and configure the EC2 instance, which will work as a template
for the worker node in your cluster.

2.	 Create an AMI from the instance.
3.	 Use SQS to task queues for passing messages to your EC2 instances.
4.	 Launch the Auto Scaling group.
5.	 Schedule work via a task queue.
6.	 Observe the output.

In this batch processing cluster, the worker nodes in your cluster will convert
a number of different images into a single montage image. A worker node will
download the images from the URLs provided by you and will stitch them into
a single montage image using the ImageMagick tool. Let's start performing this
operation one by one. You have to start by creating an IAM role.

Creating an IAM role
Your batch processing node will communicate with the queuing service SQS to get
the processing instructions and will put it into S3. To do this, follow these steps:

1.	 Go to the AWS IAM console and from the left-hand side pane, select Roles.
Then, click on Create New Role, as shown in the following screenshot:

Chapter 7

[181]

2.	 Give the role the name BatchProcessing and click on Continue.
3.	 In Select Role Type, select Amazon EC2.
4.	 Locate the Amazon SQS Full Access policy and click on Select, as shown here:

You have to add an additional permission to S3, which you can do using the
following steps:

1.	 Select the newly created role and click on the Attach Role Policy button
at the bottom of the window to attach another policy.

2.	 Find Amazon S3 full access and apply it as another policy.

Until now, you are done with the IAM roles and policy creation. Now, it's time to
move on toward the EC2 section to launch the master EC2 instance. Launch the EC2
instance having Linux OS with a configuration script for ImageMagick and the batch
processing software, as follows:

1.	 Configure the Instance Details panel, as follows:
1.	 Provide the BatchProcessing role.
2.	 Expand the Advanced Details section (scroll down to locate it).
3.	 Provide the download and configuration script as the user data,

as shown in the following screenshot:

Working with AWS SQS

[182]

2.	 Configure Security Group called BatchProcessing and make sure that port
22 (SSH) is opened.

3.	 Review the configuration and launch the instance.
4.	 Log in to your instance via PuTTY or a similar tool.

After logging in, you will see the jobs directory and the image_processor.py script.

For Mac or Linux OS, there is no need to convert the .pem file to .ppk,
but you have to change the permission to 600 using the .pem file and
then log in.

It's time to create an AMI from the launched instance, so go to the Amazon EC2
Management Console and follow these steps:

1.	 Select your respective instance and from the Actions menu, select the
Create Image option.

2.	 Provide the necessary details, such as Image Name, Image Description,
and so on, and then create the AMI.

Your instance will be rebooted once and then you will lose SSH
connectivity at the time of image creation.

Initially, the newly-created instance will be in a pending state, but eventually it will
change to the available state.

Creating SQS tasks
To dispatch work from the input queue and to view the results via the output queue,
you have to go to the Amazon SQS console and perform the following steps:

1.	 Click on Create New Queue and configure it by providing the following
necessary inputs:

°° Queue Name: input
°° Default Visibility Timeout: 90 seconds

2.	 Create another queue named as the output queue.

Chapter 7

[183]

3.	 Now, select the input queue and from the Queue Actions menu,
select Send a Message.

4.	 Provide the image URLs that you want to use here. You can even put your
images in the S3 bucket and provide the S3 URL.

5.	 Click on Send Message and then click on the Close button.

To hold the output of your worker nodes, you need to configure the S3 bucket,
as follows:

1.	 Select S3 from the All services menu.
2.	 Click on Create Bucket and provide the necessary information, as shown

in the following screenshot:

3.	 Click on Create and you are ready to go with S3.

By creating all this, you are ready to launch the worker nodes within the Auto
Scaling group. Using the AWS Management Console, you can launch configurations
and Auto Scaling using a single mouse-click, and you can even bid for spot instances
within these consoles when required.

To start with the configuration, follow these steps carefully:

1.	 To create the launch configuration, you have to select the AMI and its
relevant architecture that suits your application. You have already created
the AMI, so select it from the AMI section (from the left-hand side pane)
of the EC2 Management Console.

Working with AWS SQS

[184]

2.	 To provide the configuration details, you can provide the information
in the Advanced Details section. Choose the AMI's kernel and RAM
disk and optionally fill the details in the user data block, as shown here:

3.	 You can provide spot instance's bid details if you want. Here, in the
Configure details panel, you have to provide the Name as Workers
and the IAM Role as BatchProcessing.

4.	 In the Advanced section, provide your scripts in the User Data option,
as shown in the following code:
#!/bin/bash
/usr/bin/python /home/ec2-user/image_processor.py &

5.	 Provide your necessary storage options in the form of the Root device size,
EBS volume size, and so on.

6.	 You can select an appropriate Security Group or just add a new customized
group named BatchProcessing, where you're restricting SSH access to your
IP while leaving the HTTP and HTTPS accesses open for the globe.

7.	 Review the last tab and change the previous choices if required.
8.	 At last, you've to choose the key pair to access your instances and click on

Create launch configuration.

Until now, you are done with the launch configuration for the AWS Auto Scaling
service, but now you have to configure the Auto Scaling group based on a schedule
or policy. So, let's create an Auto Scaling group for your web application, as follows:

1.	 In the very first tab, you will see a few choices; for example, Group name,
Group size, Network, Subnet, and so on with the Advanced Details option
as well. Here, in the Advanced Details section, you can call the AWS load
balancer, which will route the traffic based on the policies to your scaled
instances. Fill the appropriate details and click on Next: Configure scaling
policies, as shown here:

Chapter 7

[185]

2.	 The next tab is very important as it allows you to select between the two
fundamental scaling plans. Here, there are two options. First is the Keep
this group at its initial size option which ensures that your group figures
out a number of healthy instances equal to the initial size you mentioned.
At any point of time, if an instance fails, it will be replaced automatically.
The second option is the Use scaling policies to adjust the capacity of this
group option in which you can select the CloudWatch alarm based on some
policies to increase or decrease the number of instance counts.

3.	 You can set policies for the minimum and the maximum number of instances
initiating your Auto Scaling group. You can add CloudWatch alarms easily
after some time or in the middle of the deployment, but here, we'll add it now
to allow your group to increase its size, as shown in the following screenshot,
and vice versa (you can also configure to decrease the group size):

Working with AWS SQS

[186]

4.	 You are almost done, so now it's time to configure the notifications relative
to your group in order to get updates.

5.	 The Review tab helps you to review the configuration; after clicking on the
Create Auto Scaling Group button, you will be redirected to a status screen
that shows the creation of your resources. If something fails, you're prompted
to retry the single resource initiation again with the correction.

So, after initiating, you can see the new scaling activity on your EC2 dashboard,
and whenever required, you can make changes to these configurations as per
the requirement.

Dispatching work and viewing the results
You have to use the SQS Management Console to put some more messages in your
input SQS queue. Your worker node will expect a new-line delimited list of URLs
for the images.

Choose your input queue and confirm whether you have a single message in the
queue. If a message is not there, check the following:

•	 The worker node
•	 The IAM role configuration
•	 Queue names
•	 The BatchProcessing role for the instance

The following are the steps to view the output from the output queue:

1.	 Select the output queue and from the Queue Actions menu,
select View/Delete Messages.

2.	 Click on Start Polling for Messages.
3.	 Locate your message and click on More Details to view the message body.

Monitoring the cluster
You can now go to Amazon CloudWatch to monitor your cluster. As you have
already defined the CloudWatch alarm at the time of creating the Auto Scaling
policies, you just need to check the metrics from the Services menu, as follows:

1.	 Click on Browse Metrics.
2.	 Click on the SQS Metrics header.

Chapter 7

[187]

3.	 Choose the line for the following options:

°° QueueName: input
°° MetricName: ApproximateNumberOfMessagesVisible

Check the configuration and you are done here. You can find the usefulness of
queues and SQS from the preceding example.

Summary
In this chapter, you saw what AWS SQS is and its basic features. Later on,
you went through the life cycle of AWS SQS. Finally, you learned the creation
of the SQS topic, its publishing, and AWS SQS using CLI.

In the next chapter, you will get a brief overview of AWS SNS and cover the
important operations of AWS SNS with your cloud/in-house applications.
Finally, you will learn the basics of AWS SNS with programming.

Building an Application
Using AWS

We have discussed most of the interesting and useful AWS offerings in the previous
chapters. Now, it is time to integrate all those services in an application. Here, we
are going to create a web application that is a blend of all the AWS services. In this
chapter, we will focus on the following topics:

•	 An overview of the application
•	 Tools and software requirement elicitation
•	 Application implementation and management

An overview of an application
The application that we are going to develop and maintain using AWS is called
EducationCloud. This application will provision the EC2 instances to their registered
users. We are going to use Java Server Faces (JSF) to create the web application; so, the
user registration page, login page, dashboard, and every web page will be coded using
JSF. In this application, a user will register himself to EducationCloud with his mobile
number and e-mail address. During the registration, an SNS topic will be created with
his username as the topic name. Both the mobile number and the e-mail address will
be subscribed to this topic. The admin will approve the user. Then, the user can request
for an EC2 instance (or our custom AMIs). Even if he requests for the instances in VPC,
we are going to provision the same. MySQL Relational Database Service (RDS) will
be used as a database to store this information.

Building an Application Using AWS

[190]

Once the instance request has been approved by the admin, an SMS and an e-mail
will be sent to the respective endpoints about the connection details to the instance.
As the number of users and instance requests exceed, there is a possibility that some
SNS messages might be lost, so we add those to the SQS queues. We are going to store
the instance key pairs in S3; once the user downloads it, we will delete them from S3.
Finally, we will see how this application can be deployed on Elastic Beanstalk.

Tool selection
We don't need any specific software tools to build our application. We will use the
following freeware tools:

•	 Eclipse IDE (as the development environment) with an AWS plugin setup
•	 JDK 7 and Tomcat 7.0 (to run our web application locally)
•	 MySQL connector (to connect to our RDS instance)
•	 PuTTYgen (to create the .ppk file from the .pem file)
•	 PuTTY (to connect to the EC2 instance)

All the preceding software are open source. Since we have already discussed
most of these software in the previous chapters, we will move on to the
application development.

Creating an application
Now is the time to get our hands dirty by creating our first AWS application
(or better known as the application that uses the AWS core services). It is a JSF
application, so rather than talking about the decoration of the JSF page and how
to make a connection to the MySQL database, we will focus only on the code
where we are performing an AWS operation. The application can be downloaded
from this book's supporting code files, available on the Packt Publishing website.

Assumptions
For the proper working of the application, the following assumptions must be
made. We can even call these points as prerequisites. Even if one of these is
missed out, the whole application will fail:

•	 We should have a bucket with the name my-keypair to save the EC2 keys.

Chapter 8

[191]

•	 The RDS instance must have an education_cloud database with an
admin account.

•	 The AWS credentials file must be configured with the admin's AWS account.
•	 The publishInstanceCreation method of the SNSoperations class should

have the correct subscriber. In the application, it will be hardcoded as
016883241246. This must be replaced with a proper value.

Users
This application has two kinds of roles for users, namely, admin and non-admin. The
admin user can manage instance requests. The following screenshot shows the admin
user's dashboard. It consists of two sections. The first section is the Request section
in which the admin can approve, reject, or waitlist a group of instance requests. This
section consists of three links each to navigate to the Approved requests, Pending
requests, and Rejected requests pages. The second section is the Links section,
which has links to add new instances to be made available for the customer or
student. The other links are used to test whether the application is running, by
requesting and approving the instance and thereby checking the entire workflow.

Our application has another role, which is non-admin (it can be a student or a teacher).
We will call this user as the customer. The non-admin user's home page will have links
to request for a new instance as well as view and edit the existing requests.

Building an Application Using AWS

[192]

An instance is a collection of the instance type, AMI ID, and kernel ID. These
properties are pretty much critical, as choosing an improper combination will
result in an exception. In our application, it is the responsibility of the admin to
decide on these combinations because it requires expertise. This is the primary
operation of our application. Without adding an instance, the customer cannot
request any instance. The following screenshot shows the Add Instance page.
The first parameter is the Instance Type, which starts from the low-end (free tier
eligible) T1 Micro to i2 8xlarge. If we want to add information such as the RAM
disk size, we can specify it in the description. Then we can click on the Add
Instance button, which will add this information to the database:

Signing up with EducationCloud
On the login screen, there will be a link to sign up. The signup page will ask for your
information, as shown in the following screenshot. Enter your personal information
in the first five fields, and the other two fields are used to create your login details.

Chapter 8

[193]

Once the user clicks on the Create Account button, the user's personal details will be
added to the Customer table and the login details will be added to the Login table.
Simultaneously, an SNS topic will be created by our application with the username
as the topic name. In the preceding screenshot, we registered a user with the name
kprabha1989. So, an SNS topic will be created with his name as the topic name, and
the user will be notified about his request update. The following code is used for
topic creation:

public void createInstanceTopic(String topicName, String mailId,
 String mobileNumber) {
 CreateTopicRequest topic = new CreateTopicRequest();
 topic.setName(topicName);
 topic.setRequestCredentials(credential);
 String topicArn = client.createTopic(topic).getTopicArn();
 createInstanceSubscription(topicArn, mailId, mobileNumber);
 }

In total, EducationCloud uses four tables. The Customer table stores personal
information specified during the signup process. The Login table stores the login
information for EducationCloud. The Instance table stores information about the
instance parameters, such as AMI ID, kernel ID, instance type, and so on (which is
the admin module). The fourth table, Request, has information about the instance
requested by the user and its status.

The createInstanceTopic function takes three parameters. The first parameter is
topicName (which is the same as that of the username), and the next two parameters
are mailId and mobileNumber (which are obtained from the personal information
entered during signup). The preceding code creates a topic, topicArn (along with
mailId and mobileNumber), which is passed to the createInstanceSubscription
method. The implementation of this method is shown as follows:

private void createInstanceSubscription(String topicArn, String
mailId, String mobileNumber) {
 SubscribeRequest subscribeRequest = new SubscribeRequest();
 subscribeRequest.setTopicArn(topicArn);
 subscribeRequest.setEndpoint(mailId);
 subscribeRequest.setProtocol("email");
 client.subscribe(subscribeRequest);
 if (mobileNumber.contains("+1")) {
 SubscribeRequest request = new SubscribeRequest();
 request.setTopicArn(topicArn);
 request.setEndpoint(mobileNumber);
 request.setProtocol("SMS");
 client.subscribe(request);
 }
}

Building an Application Using AWS

[194]

The preceding code subscribes the registered e-mail ID and phone number to the
topic. SNS supports all the e-mail IDs, but SMS notification is currently supported
only for the US. As soon as we click on the Create Account button, the user will get
a subscription e-mail for the topic. Once the user clicks on the Confirm subscription
link, as shown in the following screenshot, the e-mail ID will be subscribed. The
same is the case with the mobile number. If the mobile number has +1 (US), then
a text message will be sent via an SMS to confirm the subscription.

We can verify the subscription by accessing the Management Console, as shown in
the following screenshot. Until now, there have been two users in our application
(admin and kprabha1989). The following two topics will serve the purpose for the
instance notifications:

Managing an instance request
Until now, we configured the parameters for an instance and registered a customer
to our application who subscribed to the notifications. Once the user is done with
the subscription, he can request for the available instances. He can choose one of
the instances added by the admin using the Instance Id drop-down menu. Once
he selects the Instance Id parameter, the AMI id, Kernel id, Instance Type, and
Description parameters will be populated automatically.

Chapter 8

[195]

In addition to this, the user can specify the private key pair, Key Name, to be created
and the Duration for which the instance is needed for practice. Once this is done, he
can click on Send Request, as shown in the following screenshot. This will not create
any EC2 instances. An instance will be created, and the connection details will be
mailed (and an SMS will be sent) once the request is approved by the admin.

The same information will be available on the View Request page, as shown in
the following screenshot. Since the request is not yet approved, the Status column
(of the following table) will show a yellow icon and the checkbox next to this field
will be enabled. This will be enabled only if the request is in the pending state. Since
the instance is not yet created, the Instance Id and Public DNS parameters will
be empty (as long as they are not approved by the admin):

Building an Application Using AWS

[196]

Approving an instance request
The next sequential step shows you how to approve or reject an instance request.
The admin home page is the same as the Pending requests page. It will show you
all the pending instance requests. The last field (column) of the table is a checkbox.
The admin can check this button (in the case of multiple requests, the admin can
select multiple checkboxes) and then click on the Approve button, as shown in
the following screenshot:

Clicking on the Approve button will change the status of the request and will
request for the creation of an EC2 instance. The createInstance method will be
invoked with six parameters, as shown in the following code. This code invokes
three local functions, namely, createKeyPair(), getInstancePublicDndName(),
and getInstanceState(). Another two functions, updateRequest() and
publishInstanceCreation(), will be invoked to change the status of the request
and to send notifications to the registered e-mail and phone.

public void createInstance(Integer requestId, String instanceType,
 String imageId, String kernelId, String keyName, String
 topicName) throws Exception {
 String keyPairName = createKeyPair(keyName);
 String keyPairLoc = "https://s3.amazonaws.com/my-keypair/"
 + keyPairName + ".pem";
 RunInstancesRequest request = new RunInstancesRequest();
 request.setInstanceType(InstanceType.T1Micro);
 request.setImageId(imageId); request.setMinCount(1);
 request.setMaxCount(1); request.setKernelId(kernelId);
 request.setKeyName(keyPairName);
 RunInstancesResult rs = client.runInstances(request);
 List<Instance> instances = rs.getReservation().getInstances();
 for (Instance instance : instances) {
 String awsInstanceId = instance.getInstanceId();

Chapter 8

[197]

 String publicDNS = getInstancePublicDnsName(awsInstanceId);
 String State = getInstanceState(awsInstanceId);
 if (State.equalsIgnoreCase("running")) {
 String emailMsg = "Hi " + topicName
 + ",\nYour instance's public DNS is " + publicDNS
 + ".\nKey pair can be downloaded from " + keyPairLoc;
 RequestEntity e = new RequestEntity();
 e.setRequestId(requestId);
 e.setAwsInstanceId(awsInstanceId);
 e.setKeyName(keyPairName); e.setDns(publicDNS);
 new RequestService().updateRequest(e);
 new SNSoperations().publishInstanceCreation(
 topicName, emailMsg);
} } }

To put it in a nutshell, the preceding code performs the following functions:

•	 Creates a key pair and stores it in Amazon S3
•	 Submits the EC2 instance request
•	 Tracks whether the instance got created
•	 Sends the connection details (along with the key pair's location) by

an e-mail and a SMS
•	 Updates the same details in the database (in case the user missed the

notification, they can get it from their dashboard)

The following code is used to create a key pair with the name specified by the
user (with the millisecond timestamp appended to it). It will add this key pair to
the instance request. In order to store this file at an S3 location, the saveKeyPair
method of the S3Operations class will be invoked with keyName and the key pair
content as a byte array, as shown in the following code:

public String createKeyPair(String keyName) {
 keyName += System.currentTimeMillis();
 CreateKeyPairRequest request = new CreateKeyPairRequest();
 request.setKeyName(keyName);
 CreateKeyPairResult keyPair = client.createKeyPair(request);
 String key = keyPair.getKeyPair().getKeyMaterial();
 return new S3Operations().saveKeyPair(keyName,
 new ByteArrayInputStream(key.getBytes()));
}

Building an Application Using AWS

[198]

The saveKeyPair method of the S3Operations class is shown in the following
code. In order to make this file available for public download, we set the ACL rule
as shown here. It also adds the key pair to the my-keypair S3 bucket:

public String saveKeyPair(String keyName, InputStream key) {
 AccessControlList acl = new AccessControlList();
 acl.grantPermission(GroupGrantee.AllUsers, Permission.Read);
 PutObjectRequest request = new PutObjectRequest("my-keypair",
 keyName + ".pem", key, null).withAccessControlList(acl);
 client.putObject(request);
 return keyName;
}

The following code iterates over all the instances in our account and returns the
instance state of the passed instanceId parameter. This method will be invoked
until the state changes to running, shown as follows:

public String getInstanceState(String instanceId) {
 DescribeInstancesResult dir = client.describeInstances();
 List<Reservation> reservations = dir.getReservations();
 for (Reservation reservation : reservations) {
 for (Instance instance : reservation.getInstances()) {
 if (instance.getInstanceId().equals(instanceId)) {
 InstanceState instanceState = instance.getState();
 return instanceState.getName();
 } } }
return null;
 }

Once the instance state changes to running, the following method is invoked.
The following code is used to get the public DNS of the instance, without which
the user cannot connect to the EC2 instance. This code will describe all the EC2
instances for the account. Inside the for-each loop, we will check whether the
passed instanceId parameter is the same as the parameter for the current
instance. If this is the case, the public DNS will be returned, as follows:

public String getInstancePublicDnsName(String instanceId) {
 DescribeInstancesResult dir = client.describeInstances();
 List<Reservation> reservations = dir.getReservations();
 for (Reservation reservation : reservations) {
 for (Instance instance : reservation.getInstances()) {
 if (instance.getInstanceId().equals(instanceId)) {
 InstanceState instanceState = instance.getState();
 return instance.getPublicDnsName();
 } } }
return null;
 }

Chapter 8

[199]

Once a key pair is created and stored and the instance becomes available, the DNS
and the key pair location will be published as an e-mail and an SMS to the registered
endpoints of the topic, as shown in the following code:

public void publishInstanceCreation(String topicName, String emailMsg)
{
 PublishRequest publishRequest = new PublishRequest();
 publishRequest.setSubject("Education cloud- details");
 publishRequest.setMessage(emailMsg);
 publishRequest.setTopicArn("arn:aws:sns:us-east-
 1:016883241246:"+ topicName);
 publishRequest.setRequestCredentials(credential);
 client.publish(publishRequest);
}

The e-mail sent for the user request is shown in the following screenshot. It will
have information about the public DNS and S3 location, where the key pair that
corresponds to this instance is stored:

We can verify the same details in the Management Console, as shown in the following
screenshot. The three most important parameters (Instance ID, Public DNS, and Key
pair name) are highlighted.

Building an Application Using AWS

[200]

If the user logs in to the application, the same information is shown in the dashboard.
Previously, the status icon was yellow; now, it has changed to green (since the
request is approved and the instance is provisioned). The checkbox to delete the
request is disabled. This will be enabled only if the status is pending, otherwise
(approved or rejected) it will be disabled, as shown in the following screenshot:

Rejecting an instance request
In the admin dashboard, if the admin has to reject the request and terminate the
instance, they can check the corresponding checkbox and click on the Reject button.
This will terminate the instance, as shown in the following screenshot:

The following code terminates the instance request. It can accept a list of instanceIds.
Each instanceId parameter will be iterated, and the instances will be terminated one
by one. The execution will stay with the while loop until it gets terminated, shown
as follows:

public void terminateInstance(List<String> instanceIds) {
 TerminateInstancesRequest tir = new
TerminateInstancesRequest();
 tir.setRequestCredentials(credentials);
 tir.setInstanceIds(instanceIds);
 TerminateInstancesResult result =
client.terminateInstances(tir);

Chapter 8

[201]

 List<InstanceStateChange> resultList =
result.getTerminatingInstances();
 for (InstanceStateChange instanceStateChange : resultList) {
 while (!getInstanceState(instanceStateChange.getInstanceId())
 .toString().equalsIgnoreCase("terminated"));
 }
}

If we access the Management Console, we can infer the same information about
the requested instance. We can see the status as shutting-down, as shown in the
following screenshot:

The same information will be made available in the user dashboard. Since the EC2
instance is terminated, the Instance Id and Public DNS parameters are also cleared,
as shown here:

Now, this request will be available in the admin's rejected request page. We can
check this request and click on Approve to provision the instance again to the user,
as shown here:

Building an Application Using AWS

[202]

Even though the instance (for the same request) is rejected and approved again, the
Public DNS, keypair, and Instance Id parameters will be different. The following
screenshot shows both the e-mails. The first screenshot shows the original e-mail
(published when the request is approved for the first time), and the second one
shows the latest e-mail received when reapproved:

In the following user dashboard, the Instance Id, Public DNS, and Status parameters
will be updated:

Using RDS and Elastic Beanstalk
Since the application that we created is a JSF application, we can see a file
named persistence.xml in the src/META-INF folder. Copy the following
content to the persistence.xml file and fill up the RDS-endpoint IP,
port-number, RDS-instance-username, and RDS-instance-password
parameters with the RDS instance's details and save the file. Before using
the application, make sure that a database with the name education_cloud
is available in the RDS instance, as shown in the following code:

<persistence version="1.0"...>
<persistence-unit name="ECL">
 <class>education.cloud.entity.InstanceEntity</class>
 <class>education.cloud.entity.RequestEntity</class>

Chapter 8

[203]

 <class>education.cloud.entity.LoginEntity</class>
 <class>education.cloud.entity.CustomerEntity</class>
 <properties>
 <property name="toplink.jdbc.url" value="jdbc:mysql://<RDS-
endpoint IP>:<port-number>/education_cloud" />
 <property name="toplink.jdbc.user" value="<RDS-instance-
username>" />
 <property name="toplink.jdbc.driver" value="com.mysql.jdbc.Driver"/>
 <property name="toplink.jdbc.password" value="<RDS-instance-
password>" />
<!-- Some more properties removed -->
</properties>
</persistence-unit>
</persistence>

Deploying this application on Elastic Beanstalk will be done in half a dozen clicks if
we use the Eclipse IDE. We can right-click on the JSF application and select the Run
on Server option, which opens a window asking us to choose the proper server. To
run it in our local system, we were using Tomcat 7. In order to deploy it in Elastic
Beanstalk, we need to select the AWS Elastic Beanstalk for Tomcat 7 server. A few
more windows will pop up, in which we don't do anything, except clicking on the
Next button. If the AWS plugin is properly configured, then this application will
be deployed on AWS Elastic Beanstalk.

Application of the best AWS practices
There are a few security and performance concerns, which we might have come
across in the EducationCloud application. Let's summarize those one by one:

•	 We save the instance key pair in S3 and the file has a read permission
for everyone. This should not be the case as it is a major security breach.
We must store this somewhere secure, and the read permission should be
allowed only to the instance requester.

•	 Irrespective of whether the instance request is rejected or waitlisted,
the EC2 instance will get terminated. So, we can make the application
more efficient by stopping the instance (when waitlisting the request)
and starting it again (when approving the request).

•	 There should be a provision for the non-admin user to start and stop
an instance, which will reduce the billing amount.

•	 We cannot sell this application to the third party, as it is against the
AWS agreement.

Building an Application Using AWS

[204]

Summary
You started the chapter by discussing the overview of the EducationCloud
application. Then we saw the home page and the roles of the admin user and normal
user. After this, we logged in as the admin and configured an instance so that it could
be requested by the user. Then the user signed up and requested for the instance.
We also saw how an e-mail is sent with the connection details and key pair when the
request is approved by the admin. Finally, we terminated the instance by rejecting it.
The chapter didn't stop there; we also discussed how to integrate RDS and AWS Elastic
Beanstalk to this application. At the end, we discussed four points which enhanced the
application both performance-wise and business-wise. But the learning doesn't stop
here. Since the application is downloadable, we can perform the preceding alterations
and call ourselves AWS developers.

Index
A
access keys

adding, to Eclipse toolkit 134, 135
Access Keys (Access Key ID and Secret

Access Key) 14
account, AWS

creating 53
URL 54

account identifiers 15
Additional Actions section 148
alarms

with Amazon CloudWatch 123-128
Amazon CloudWatch

alarms, used with 123-128
Amazon Cognito 143
Amazon DynamoDB. See DynamoDB
Amazon EBS

persistent storage, using with EC2 33-35
working with 32

Amazon EC2
about 50
benefits 50
EC2 instances 50, 51
operating systems 52
URL 52
using 51-53
working with 51, 52

Amazon EC2 key pairs
viewing 135

AmazonGlacierClient class 44
Amazon Machine Image (AMI) 31
Amazon RDS. See RDS
Amazon SNS

about 169

baseline concepts 144
identifying 144

Amazon SQS message
life cycle 173, 174

Amazon VPC 58
Amazon Web Services. See AWS
AMI

characteristics 32
application

assumptions 190
best AWS practices 203
creating 190
EducationCloud, signing up 192-194
Elastic Beanstalk, using 202, 203
instance request, approving 196-200
instance request, managing 194
instance request, rejecting 200-202
overview 189
RDS, using 202, 203
users 191

application deployment
AWS Elastic Beanstalk, used for 133-140

assumptions, application 190
at-least-once-delivery 171
authentication 131, 132
authentication factors 131
authorization 131, 132
Availability Zone (AZ) 65
AWS

about 5, 6, 25, 49
advantages 25, 49
history 6
performance 49
S3 bucket, creating 36-42
working with 36

[206]

AWS account administration 8
AWS CLI

URL, for downloading 114
AWS CloudFormation 119-122
AWS Elastic Beanstalk

used, for application deployment 133-140
AWS Explorer 74
AWS Glacier 42-47
AWS infrastructure management 9
AWS interaction

SDK tool 23
through IDE tool 16
through SDK tool 16

AWS interaction, IDE tool
Eclipse plugin 16-22

AWS management
handheld devices used 8

AWS Management Console
about 6
AWS account administration 8
AWS infrastructure management 9
AWS management, handheld devices

used 8
one-click access, to AWS services 7
URL 7

AWS plugin
configuring, in Eclipse IDE 16

AWS SDK tool
using 104

AWS security measures
about 10
Access Keys (Access Key ID and Secret

Access Key) 14
account identifiers 15
CloudFront key pairs 15
CloudTrail 12
instance isolation 10-12
isolated GovCloud 12
MFA 13
password 13
X.509 certificates 15

aws sns help command 167
AWS SQS 169
AWS storage

characteristics 25
AWS storage options

about 26

ephemeral storage 26-29
persistent storage 30, 31

AWS toolkit
about 74
installing 133

AWS VPC
creating 58
public subnet, creating within 59-65

B
batch processing cluster

creating 180
best AWS practices, application 203
best practices, Amazon EC2 52, 53
buckets 36

C
CLI

used, for performing DynamoDB
operations 114, 115

CLI tool
used, for performing SNS

operations 162-166
CloudFront key pairs 15
CloudTrail 12
CloudWatch

service models of Amazon SNS,
using in 145

CloudWatch metric
monitoring 123

cluster
monitoring 186

code, AWS SQS service 174-180
command-line interface (CLI) 128
command-line tool, RDS 116
content upload, to vault

Eclipse, using 44
high-level API, using 44
low-level API, using 44

createInstanceTopic function 193
custom CloudWatch metric

monitoring 127
custom IAM role

creating, for EC2 instance 124, 125
custom metric, in CloudWatch

monitoring 127

[207]

D
Dashboard section, RDS 95
database server

launching, in private subnet 66
distributed queue

at-least-once-delivery 171
message order 171
message sample 171
properties 170-172

DynamoDB
about 86
best practices 94
item operations 91-93
libraries 104
table operations 86-91

DynamoDB local
about 111-113
URL, for downloading 111

DynamoDB operations
performing, CLI used 114, 115

DynamoDB tools
about 104
Java SDK operations, performing 107-110
SDK project, creating 104-106
URL, for downloading 111

E
EC2

about 8, 74, 123
persistent storage, using with 33-35

EC2 instance
about 50, 51
creating 126, 127
custom IAM role, creating for 124, 125
root device volume, of Amazon EC2 51

Eclipse
URL 16, 42, 75

Eclipse AWS SDK
used, for performing SNS

operations 159-162
Eclipse Juno/Luna

URL 133

Eclipse plugin
about 16-22
using 104

Eclipse toolkit
access keys, adding to 134, 135

EducationCloud
signing up with 192-194

Elastic Beanstalk
using 202, 203

Elastic Block Storage (EBS) 30
Elastic Compute Cloud. See EC2
Elastic Load Balancing (ELB) 53
endpoint 144
ephemeral storage 26-29
ephemeral storage size, EC2

URL 30

F
features, AWS

AWS Explorer 74
AWS toolkit 74

FedRAMP Package Request Form
URL 12

folders, AWS
Documentation 73
Lib 73
Samples 73
Third-party 74

G
Generally Available (GA) 128
Getting Started section 148
GovCloud 12
Graphics User Interface (GUI) 8

H
handheld devices

used, for AWS management 8
Hardware/Host 10
High Availability (HA) 171
HTTP/HTTPS messaging service 147
Hypervisor 10

[208]

I
IAM

about 52, 123, 128
accessing 128-130
authentication 130-132
authorization 130-132
features 128

IAM role
creating 180-182

Identity and Access Management. See IAM
Information section, RDS 95
instance isolation 10, 12
instance request

approving 196-200
managing 194
rejecting 200-202

Integrated Development Environment
(IDE) 72

I/O Operations Per Second (IOPS) 95
isolated GovCloud 12
item operations, DynamoDB

performing 91-93

J
Java Message Service. See JMS
Java SDK operations

performing 107-110
Java Server Faces (JSF) 189
JMS

about 144
endpoint 144
protocol 144
subscription 144
topic 144

L
Lib folder, AWS

aws-java-sdk-<version>.jar 73
aws-java-sdk-<version>-sources.jar 73

libraries
computing 72-81
networking 72-81

libraries, AWS SQS service 174-180
libraries, SNS 159

Linux instances
about 56-58
Amazon VPC 58
AWS VPC, creating 58
database server, launching in private

subnet 66
launching 57
OpenVPN instance, launching 66-71
private subnet, creating 65

long polling
about 171
enabling 171, 172

M
Management Console

SNS operations performing, CLI tool
used 162-166

SNS operations performing, Eclipse AWS
SDK used 159-162

used, for accessing SNS 147-149
message

publishing 174
publishing, to topic 154, 155

message order 171
Message Queuing Services. See MQS
message sample

about 171
long polling 171
short polling 171

mobile analytics 143
mobile push notifications service 146
mobile services, AWS

Amazon Cognito 143
Mobile analytics 143
SNS 143

MQS 169
Multi-Factor Authentication (MFA)

about 13, 132
URL 132

My Resources section 148
MySQL Workbench 6.1 CE

URL, for downloading 100

N
Navigation section 148

[209]

O
one-click access

to AWS services 7
OpenVPN instance

launching 66-71

P
paravirtual (PV) 34
password, AWS security measures 13
persistent storage

about 30, 31
used, with EC2 33-35

pricing options
URL 53

private subnet
creating 65
database server, launching in 66

protocol 144
provisioned throughput capacity 86
public subnet

creating, within AWS VPC 59-65
publishInstanceCreation() function 196

R
RDS

about 85, 94, 189
command-line tool 116
Deployment step 96
using 202, 203

RDS DB instance
creating 95-100

RDS DB instance connection
creating 100-103

Redundant Array of Inexpensive
Disks (RAID) 32

Relational Database Service. See RDS
Resources section, RDS 95
results

viewing 186
root device volume, of Amazon EC2

about 51
AMIs backed, by Amazon EBS 51
AMIs backed, by Instance store 51

Route 53 49

S
S3 bucket

creating 36-42
sample code, SNS 159
SDK

about 23
URL 23

SDK project
creating 104-106

SDK tool 23
Secure Shell (SSH) 123
security credential page

URL 13
Security Groups (SG) 52
service models, Amazon SNS

about 145
conjunction, with SQS queues 146
HTTP/HTTPS messaging service 147
mobile push notifications service 146
SMS notifications service 146
usage, in CloudWatch 145

sharding 86
short polling 171
Simple Notification Service. See SNS
Simple Queue Service. See SQS
Simple Storage Service (S3) 13, 32, 74
SMS notifications service 146
SNS

about 13, 74, 143
accessing, Management Console

used 147-149
SNS, CLI used

cluster, monitoring 186
IAM role, creating 180-182
results, viewing 186
SQS tasks, creating 182-186
work, dispatching 186

SNS, Management Console
SNS topic, creating 149, 150
subscription, adding to topic 151-153
topic actions 153

SNS operations
performing, CLI tool used 162-166
performing, Eclipse AWS SDK

used 159-162

[210]

SNS topic
creating 149, 150

Software Development Kit. See SDK
SQS

about 74, 169
Amazon SQS message, life cycle 173, 174
baseline concept 170
distributed queue, properties 170-172
object models 170

SQS queues
conjunction with 146

SQS tasks
creating 182-186

subscription
about 144
adding, to topic 151-153

T
table operations, DynamoDB

performing 86-91
tools

computing 72-81
networking 72-81
selecting 190
URL 16

tools, AWS
about 53, 54
Linux instances 56-58
Windows instances 54-56

tools, SDK users
URL 43

topic
about 144
message, publishing to 154, 155
subscription, adding to 151-153

topic actions
about 153
message, publishing to topic 154, 155
topic delivery policy actions 157-159
topic policy actions 156

topic delivery policy actions
about 157-159
advanced view 157
basic view 157

topic policy actions 156

U
updateRequest() function 196
users, application 191

V
virtual machine monitor (VMM) 11
virtual machines (VMs) 11

W
web application

deploying 76, 137-140
Windows instance

about 54-56
launching 55

work
dispatching 186

X
X.509 certificates 15

Thank you for buying
AWS Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Amazon Web Services: Migrating
your .NET Enterprise Application
ISBN: 978-1-84968-194-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise application to the
Amazon Web Services Platform

1.	 Get to grips with Amazon Web Services from
a Microsoft Enterprise .NET viewpoint.

2.	 Fully understand all of the AWS products,
including EC2, EBS, and S3.

3.	 Quickly set up your account and manage
application security.

Learning AWS OpsWorks
ISBN: 978-1-78217-110-2 Paperback: 126 pages

Learn how to exploit advanced technologies to
deploy and auto-scale web stacks

1.	 Discover how a DevOps cloud management
solution can accelerate your path to delivering
highly scalable infrastructure and applications.

2.	 Learn about infrastructure automation,
auto-scaling, and distributed architecture
using a Chef-based framework.

3.	 Includes illustrations, details, and practical
examples for successful scaling in the cloud.

Please check www.PacktPub.com for information on our titles

VMware vCloud Security
ISBN: 978-1-78217-096-9 Paperback: 106 pages

Make your datacenter secure and compliant at every
level with VMware vCloud Networking and Security

1.	 Take away an in-depth knowledge of
how to secure a private cloud running
on vCloud Director.

2.	 Enable the reader with the knowledge, skills,
and abilities to achieve competence at building
and running a secured private cloud.

3.	 Focuses on giving you a broader view of the
security and compliance while still being
manageable and flexible to scale.

VMware vCloud Director
Essentials
ISBN: 978-1-78398-652-1 Paperback: 198 pages

Build VMware vCloud-based cloud datacenters
from scratch

1.	 Learn about DHCP, NAT, and VPN services
to successfully implement a private cloud.

2.	 Configure different networks such as Direct
connect, Routed, or Isolated.

3.	 Configure and manage vCloud Director's
access control.

Please check www.PacktPub.com for information on our titles

